/* * Copyright (C) 2022 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package com.android.systemui.surfaceeffects.shaderutil /** Common utility functions that are used for computing shaders. */ object ShaderUtilLibrary { // language=AGSL const val SHADER_LIB = """ float triangleNoise(vec2 n) { n = fract(n * vec2(5.3987, 5.4421)); n += dot(n.yx, n.xy + vec2(21.5351, 14.3137)); float xy = n.x * n.y; // compute in [0..2[ and remap to [-1.0..1.0[ return fract(xy * 95.4307) + fract(xy * 75.04961) - 1.0; } const float PI = 3.1415926535897932384626; float sparkles(vec2 uv, float t) { float n = triangleNoise(uv); float s = 0.0; for (float i = 0; i < 4; i += 1) { float l = i * 0.01; float h = l + 0.1; float o = smoothstep(n - l, h, n); o *= abs(sin(PI * o * (t + 0.55 * i))); s += o; } return s; } vec2 distort(vec2 p, float time, float distort_amount_radial, float distort_amount_xy) { float angle = atan(p.y, p.x); return p + vec2(sin(angle * 8 + time * 0.003 + 1.641), cos(angle * 5 + 2.14 + time * 0.00412)) * distort_amount_radial + vec2(sin(p.x * 0.01 + time * 0.00215 + 0.8123), cos(p.y * 0.01 + time * 0.005931)) * distort_amount_xy; } // Perceived luminosity (L′), not absolute luminosity. half getLuminosity(vec3 c) { return 0.3 * c.r + 0.59 * c.g + 0.11 * c.b; } // Creates a luminosity mask and clamp to the legal range. vec3 maskLuminosity(vec3 dest, float lum) { dest.rgb *= vec3(lum); // Clip back into the legal range dest = clamp(dest, vec3(0.), vec3(1.0)); return dest; } // Integer mod. GLSL es 1.0 doesn't have integer mod :( int imod(int a, int b) { return a - (b * (a / b)); } ivec3 imod(ivec3 a, int b) { return ivec3(imod(a.x, b), imod(a.y, b), imod(a.z, b)); } // Integer based hash function with the return range of [-1, 1]. vec3 hash(vec3 p) { ivec3 v = ivec3(p); v = v * 1671731 + 10139267; v.x += v.y * v.z; v.y += v.z * v.x; v.z += v.x * v.y; ivec3 v2 = v / 65536; // v >> 16 v = imod((10 - imod((v + v2), 10)), 10); // v ^ v2 v.x += v.y * v.z; v.y += v.z * v.x; v.z += v.x * v.y; // Use sin and cos to map the range to [-1, 1]. return vec3(sin(float(v.x)), cos(float(v.y)), sin(float(v.z))); } // Skew factors (non-uniform). const half SKEW = 0.3333333; // 1/3 const half UNSKEW = 0.1666667; // 1/6 // Return range roughly [-1,1]. // It's because the hash function (that returns a random gradient vector) returns // different magnitude of vectors. Noise doesn't have to be in the precise range thus // skipped normalize. half simplex3d(vec3 p) { // Skew the input coordinate, so that we get squashed cubical grid vec3 s = floor(p + (p.x + p.y + p.z) * SKEW); // Unskew back vec3 u = s - (s.x + s.y + s.z) * UNSKEW; // Unskewed coordinate that is relative to p, to compute the noise contribution // based on the distance. vec3 c0 = p - u; // We have six simplices (in this case tetrahedron, since we are in 3D) that we // could possibly in. // Here, we are finding the correct tetrahedron (simplex shape), and traverse its // four vertices (c0..3) when computing noise contribution. // The way we find them is by comparing c0's x,y,z values. // For example in 2D, we can find the triangle (simplex shape in 2D) that we are in // by comparing x and y values. i.e. x>y lower, xy0>z0: (1,0,0), (1,1,0), (1,1,1) // x0>z0>y0: (1,0,0), (1,0,1), (1,1,1) // z0>x0>y0: (0,0,1), (1,0,1), (1,1,1) // z0>y0>x0: (0,0,1), (0,1,1), (1,1,1) // y0>z0>x0: (0,1,0), (0,1,1), (1,1,1) // y0>x0>z0: (0,1,0), (1,1,0), (1,1,1) // // The rule is: // * For offset1, set 1 at the max component, otherwise 0. // * For offset2, set 0 at the min component, otherwise 1. // * For offset3, set 1 for all. // // Encode x0-y0, y0-z0, z0-x0 in a vec3 vec3 en = c0 - c0.yzx; // Each represents whether x0>y0, y0>z0, z0>x0 en = step(vec3(0.), en); // en.zxy encodes z0>x0, x0>y0, y0>x0 vec3 offset1 = en * (1. - en.zxy); // find max vec3 offset2 = 1. - en.zxy * (1. - en); // 1-(find min) vec3 offset3 = vec3(1.); vec3 c1 = c0 - offset1 + UNSKEW; vec3 c2 = c0 - offset2 + UNSKEW * 2.; vec3 c3 = c0 - offset3 + UNSKEW * 3.; // Kernel summation: dot(max(0, r^2-d^2))^4, noise contribution) // // First compute d^2, squared distance to the point. vec4 w; // w = max(0, r^2 - d^2)) w.x = dot(c0, c0); w.y = dot(c1, c1); w.z = dot(c2, c2); w.w = dot(c3, c3); // Noise contribution should decay to zero before they cross the simplex boundary. // Usually r^2 is 0.5 or 0.6; // 0.5 ensures continuity but 0.6 increases the visual quality for the application // where discontinuity isn't noticeable. w = max(0.6 - w, 0.); // Noise contribution from each point. vec4 nc; nc.x = dot(hash(s), c0); nc.y = dot(hash(s + offset1), c1); nc.z = dot(hash(s + offset2), c2); nc.w = dot(hash(s + offset3), c3); nc *= w*w*w*w; // Add all the noise contributions. // Should multiply by the possible max contribution to adjust the range in [-1,1]. return dot(vec4(32.), nc); } // Random rotations. // The way you create fractal noise is layering simplex noise with some rotation. // To make random cloud looking noise, the rotations should not align. (Otherwise it // creates patterned noise). // Below rotations only rotate in one axis. const mat3 rot1 = mat3(1.0, 0. ,0., 0., 0.15, -0.98, 0., 0.98, 0.15); const mat3 rot2 = mat3(-0.95, 0. ,-0.3, 0., 1., 0., 0.3, 0., -0.95); const mat3 rot3 = mat3(1.0, 0. ,0., 0., -0.44, -0.89, 0., 0.89, -0.44); // Octave = 4 // Divide each coefficient by 3 to produce more grainy noise. half simplex3d_fractal(vec3 p) { return 0.675 * simplex3d(p * rot1) + 0.225 * simplex3d(2.0 * p * rot2) + 0.075 * simplex3d(4.0 * p * rot3) + 0.025 * simplex3d(8.0 * p); } // Screen blend vec3 screen(vec3 dest, vec3 src) { return dest + src - dest * src; } """ }