
Optimizing Sin/Cos
For SwiftShader

Nicolas Capens <capn@google.com>

Introduction
SwiftShader is a conformant implementation of the Vulkan graphics API which runs entirely on
the CPU. We’ve identified trigonometric functions, and in particular sin and cos, to require
optimization.

Objective
Vulkan specifies that the single-precision (32-bit) result of the sin() and cos() shader
operations must have an “Absolute error ≤ 2−11 inside the range [−π,π].” That’s a tolerance
smaller than 0.0005.

SwiftShader historically had a cheap approximation based on a parabolic curve and a weighted
average with the square of this curve. Unfortunately this was only precise to about 0.001. It was
replaced by an implementation derived from A Fast, Vectorizable Algorithm for Producing
Single-Precision Sine-Cosine Pairs by Marcus H. Mendenhall. It is highly precise but takes 18
multiplications, a division, and several other operations.

A new implementation with precision in between these two will also have to be vectorizable to
take advantage of wide SIMD.

Polynomial Approximation
Mendenhall’s algorithm is based around a rational function, using polynomials of 7th and 6th
degree. So we could consider using a rational function of smaller degree. Bhaskara I's sine
approximation formula uses a rational function which requires only three multiplications total, but
has an precision of just 0.0016. So a rational function of slightly higher degree may look
promising.

Unfortunately, divisions are very expensive compared to multiplication. Intel’s latest CPUs can
do 20 fused-multiply-add operations in the same time as one division. This means even
Bhaskara I’s seemingly simple formula is actually not even two times faster than Mendenhall’s.

Instead we can consider ordinary polynomials. Note that due to the symmetry of sine and
cosine, we could consider approximating just one ‘quadrant’ from to :𝑥 = 0 π / 2

https://www.vulkan.org/
https://issuetracker.google.com/169754022
https://www.khronos.org/registry/vulkan/specs/1.2/html/vkspec.html#spirvenv-precision-operation
https://cs.opensource.google/swiftshader/SwiftShader/+/master:src/Pipeline/ShaderCore.cpp;drc=030b541b8e0038fd2c99b72ccb4fd74d7c51f363;l=303
https://swiftshader-review.googlesource.com/c/SwiftShader/+/13555
https://arxiv.org/pdf/cs/0406049.pdf
https://arxiv.org/pdf/cs/0406049.pdf
https://docs.google.com/document/d/1GGJxTkz3rPRNWkrLOFuT-8HtH-wFJ_or24f6CjBDKMs/edit#bookmark=id.e50jhgbl2jpa
https://en.wikipedia.org/wiki/Rational_function
https://en.wikipedia.org/wiki/Bhaskara_I%27s_sine_approximation_formula
https://en.wikipedia.org/wiki/Bhaskara_I%27s_sine_approximation_formula
https://www.agner.org/optimize/instruction_tables.pdf

It’s important to note that taking advantage of this symmetry takes additional instructions as
well. If we have a generic polynomial approximation for the segment highlighted above, we still
need to produce negative results for two of the other segments. Doing so requires either
conditionally multiplying by -1 or copying the sign from another operand. Neither operation can
be done in a single instruction on any known x86 CPUs. It may seem premature to worry about
that, but bear with me.

Due to this issue it is useful to have an approximation which is symmetrical around the origin,
i.e. . Functions with this property are called odd functions, and polynomials with𝑓(− 𝑥) =− 𝑓(𝑥)
this property use only odd powers of . The sine wave is an odd function, but cosine is not. An𝑥
approximation of the cosine for all between and would still not produce negative𝑥 − π / 2 π / 2
numbers. It is therefore better to find a solution for sine and then use the identity

rather than try to approximate cosine and implement sine as𝑐𝑜𝑠(𝑥) = 𝑠𝑖𝑛(π/2 − 𝑥)
.𝑐𝑜𝑠(π/2 − 𝑥)

The question now becomes whether there’s a cheap but good approximation of between𝑠𝑖𝑛(𝑥)
and using an odd polynomial. Or do we lose precision compared to a generic− π / 2 π / 2

polynomial of comparable computational complexity if we approximate just one quadrant with it
and deal with the oddness issue separately?

A polynomial of terms has coefficients, and using a system of linear equations any𝑛 𝑛
polynomial with coefficients can satisfy conditions. These conditions can be things like𝑛 𝑛

, meaning we can make the polynomial exactly match the function we’re trying to𝑓(𝑎) = 𝑠𝑖𝑛(𝑎)
approximate, at points. The conditions can also be other things like precisely matching the𝑛
derivative (i.e. slope) at certain . Either way, each condition greatly improves the ‘fit’ of the𝑥
approximation, and for conditions we need a generic polynomial of degree , or an odd𝑛 𝑛 − 1
polynomial of degree .2𝑛 − 1

Using Horner’s method, computing the result of a ’th degree polynomial only takes𝑛 𝑛
multiplications. This appears to strongly favor not restricting ourselves to odd polynomials.

https://en.wikipedia.org/wiki/Even_and_odd_functions#Odd_functions
https://en.wikipedia.org/wiki/System_of_linear_equations
https://en.wikipedia.org/wiki/Horner%27s_method

Fortunately, Horner’s method can easily be adapted to include , which only has to be𝑥2

computed once: . Thus the cost for conditions is only𝑥(𝑎 + 𝑥2(𝑏 + 𝑥2(𝑐 + 𝑥2(…)))) 𝑛 𝑛 + 1
multiplications.

But wait, there’s more! With odd polynomials we already get one essential condition for free:
. So really for the cost of one multiplication we get the symmetry around the origin that𝑓(0) = 0

we were after, versus the multiple instructions it would have otherwise taken.

Fitting the Curve
Using the Desmos online graphing calculator, I used a 2-term odd polynomial (where𝑎𝑥 + 𝑏𝑥3)
the coefficients are controlled by 2 sliders, to visually prove it’s not possible to achieve Vulkan’s
precision requirements:

The red graph is the difference between our approximation and , while the purple and blue𝑠𝑖𝑛(𝑥)
lines are the allowable error limits. Note this optimal result (for the absolute error) even
sacrifices the condition that , which some applications might expect even though𝑓(π/2) = 1
Vulkan does not explicitly guarantee it (or demand it, depending on your point of view).

But once we use a 5’th degree odd polynomial…

https://www.desmos.com/calculator

Success! With some fingerspitzengefühl we can fit the error between the tolerance boundaries.

Note this example crosses the -axis twice (besides the ‘free’ one at). With three𝑥 𝑥 = 0
coefficients, we can actually satisfy three precise conditions, but note there’s no guarantee the
error would remain low enough. Also, picking specific conditions and trying to achieve them with
an interactive graphing calculator is practically futile.

This is where we have to resort to algebra. Symbolab offers a nice online system of equations
calculator. Again note that as far as Vulkan is concerned, we’ve already reached our goal, so
whichever conditions we choose that result in an approximation that still fits its criteria, are a
bonus. Let’s see if we can get at least the aforementioned . That is, use𝑓(π/2) = 1

as our first equation.𝑎(π/2) + 𝑏(π/2)3 + 𝑐(π/2)5 = 𝑠𝑖𝑛(π/2)

For the second and third condition I think either and , or𝑓(π/6) = 𝑠𝑖𝑛(π/6) 𝑓(π/3) = 𝑠𝑖𝑛(π/3)
and are the most interesting. The first pair of conditions equally spaces𝑓'(0) = 1 𝑓'(π/2) = 0

out where the error graph crosses the -axis, while the second pair ensures the approximation's𝑥
slopes match that of at the start and end of our quadrant. Enter the three equations into𝑠𝑖𝑛(𝑥)
Symbolab and we get, respectively:

1) , ,𝑎 = 47−9 3
10π 𝑏 = 72 3−135

2π3 𝑐 = 1134−648 3

5π5

https://www.symbolab.com/solver/system-of-equations-calculator

2) , ,𝑎 = 1 𝑏 =− 8π−20

π3 𝑐 = 16π−48

π5

Both still meet Vulkan’s criterion! The former even has practically half the maximum error
allowed by Vulkan. And that’s not the best possible result. Indeed algorithms exist that minimize

https://en.wikipedia.org/wiki/Minimax_approximation_algorithm

the maximum error. There’s many other criteria that one may want to go after; minimizing the
maximum relative error, balancing the positive and negative error, keeping the values between

bounds, etc. Solution (1) above has a nice blend of desirable qualities, so I’ll use that in− 1, 1[]
the rest of this document.

To recap this result in the form of code, we now have:

// Polynomial approximation of degree 5 for sin(x) in the range [-pi/2, pi/2]
float sin5(float x)
{

// A * x + B * x^3 + C * x^5
// Exact at x = 0, pi/6, pi/3, pi/2, and their negatives
constexpr float A = 0.999860466f;
constexpr float B = -0.165971905f;
constexpr float C = 0.00760152191f;

float x2 = x * x;

return x * (A + x2 * (B + x2 * C));
}

Note that functions like sqrt() and pow() are not constexpr, so we have to precompute the
coefficients ourselves. The full cost of this function is four multiplications and two additions, and
the latter could be fused so it’s just four instructions. With two FMA units per core, this takes two
clock cycles (reciprocal throughput).

Odd Even Powers
The above result is great but before we move on to turning it into an approximation of 𝑠𝑖𝑛(𝑥)
which can take a wider range of input values, let’s see how we could produce higher or lower

precision results at minimal cost. For example Vulkan requires a precision of merely for ‘half2−7

precision’ calculations.

If you look closely at SwiftShader’s legacy low-precision implementation, you’ll notice a𝑠𝑖𝑛(𝑥)
little trick. The approximation is based on a parabola, which is a 2nd degree even polynomial,

but the function is made odd by using instead of . Can we do the same for higher𝑥 · 𝑎𝑏𝑠(𝑥) 𝑥2

degree polynomials? Certainly:

𝑎𝑥 + 𝑏𝑥 𝑥| | + 𝑐𝑥3 + 𝑑𝑥3 𝑥| | + …

We can even apply Horner’s method by observing that :𝑥| |2 = 𝑥2

𝑥(𝑎 + 𝑥| |(𝑏 + 𝑥| |(𝑐 + 𝑥| |(𝑑 + …))))

https://en.wikipedia.org/wiki/Minimax_approximation_algorithm
https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation
https://cs.opensource.google/swiftshader/SwiftShader/+/master:src/Pipeline/ShaderCore.cpp;drc=030b541b8e0038fd2c99b72ccb4fd74d7c51f363;l=303

The significance of this is that we can now have coefficients for a cost of multiplications,𝑛 𝑛
instead of . The only added cost is that of an abs(x), which on most CPU can be𝑛 + 1
handled by execution ports other than the ones for multiplication, and at lower latency.

The minimum maximum absolute error that can be achieved for is 0.0057, while for𝑎𝑥 + 𝑏𝑥3

it is 0.0019. Fortunately both are below the 0.0078 tolerance for Vulkan’s𝑎𝑥 + 𝑏𝑥 𝑥| | + 𝑐𝑥3

half-precision requirement, but the former formula does not meet this criterion when requiring
that and , whereas the latter allows for𝑓(π/4) = 𝑠𝑖𝑛(π/4) 𝑓(π/2) = 𝑠𝑖𝑛(π/2)

, , and .𝑓(π/6) = 𝑠𝑖𝑛(π/6) 𝑓(π/3) = 𝑠𝑖𝑛(π/3) 𝑓(π/2) = 𝑠𝑖𝑛(π/2)

Triangle Wave
We now have approximations of for in the range . For the quadrant in the𝑠𝑖𝑛(𝑥) 𝑥 [− π/2, π/2]
range we need to mirror the section, and for the quadrant we need[π/2, π] [0, π/2] [− π, π/2]
to mirror the section. Then, the result of this needs to be repeated to achieve the full[− π/2, 0]
periodicity of . This can also be expressed as replacing the input with the result of a𝑠𝑖𝑛(𝑥)
triangle wave:

The red section is simply within the range .𝑥 ↦ 𝑥 [− π/2, π/2]

To achieve periodicity one might be eager to use as a starting point. Unfortunately𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥)
it doesn’t have any negative portion, so one would have to subtract 0.5 and then adjust the
phase with another subtraction or addition. Instead can be used, and then we just𝑥 − 𝑟𝑜𝑢𝑛𝑑(𝑥)
need to take the absolute value to achieve a triangle wave:

To make -sized symmetrical waves, we have to bias, scale, and phase shift so we end up with:π

π
2 − 2π · 𝑎𝑏𝑠((1

4 − 𝑥
2π) − 𝑟𝑜𝑢𝑛𝑑(1

4 − 𝑥
2π))

Note that only needs to be computed once, and the division can be replaced by a1
4 − 𝑥

2π

multiplication by . So that’s two multiplications, three subtractions, a round() and an1/2π
abs().

That’s relatively expensive given how cheaply we can compute the polynomial. Can we do any
better? Yes! Note that the -axis of this triangle wave is ‘connected’ to the -axis of the𝑦 𝑦
polynomial graph (i.e. the output of the former is the input to the latter). They have to match in
scale, but this scale is arbitrary. If we make the triangle wave two times taller, we can ‘stretch’
the polynomial to become two times wider, and the combination would still be the same
approximation of . But we can also scale down the triangle wave by a factor of to get𝑠𝑖𝑛(𝑥) 2π
rid of that first multiplication, and squeeze our polynomial into the range . Putting it[− 1/4, 1/4]
all together, we get:

// Polynomial approximation of degree 5 for
// sin(x * 2 * pi) in the range [-1/4, 1/4]
static float sin5q(float x)
{

// A * x + B * x^3 + C * x^5
// Exact at x = 0, 1/12, 1/6, 1/4, and their negatives,
// which correspond to x * 2 * pi = 0, pi/6, pi/3, pi/2
constexpr float A = 6.28230858f;
constexpr float B = -41.1693687f;
constexpr float C = 74.4388885f;

float x2 = x * x;

return x * (A + x2 * (B + x2 * C));
}

float sin(float x)
{

constexpr float pi2 = 1 / (2 * 3.1415926535f);

// Range reduction and mirroring
float x_2 = 0.25f - x * pi2;
float z = 0.25f - abs(x_2 - round(x_2));

return sin5q(z);
}

Cosine’s Revenge
As noted early on, can just be computed as a phase-shifted . So it’s one extra𝑐𝑜𝑠(𝑥) 𝑠𝑖𝑛(𝑥)
operation, right? Nope:

float cos(float x)
{

constexpr float pi2 = 1 / (2 * 3.1415926535f);

// Range reduction and mirroring
float x_2 = x * pi2;
float z = 0.25f - abs(x_2 - round(x_2));

return sin5q(z);
}

actually ends up taking one fewer subtraction operations, because the phase shift𝑐𝑜𝑠(𝑥)
cancels out the one that was needed for the sine’s triangle wave!

It doesn’t seem feasible to produce an odd triangular wave for use by without at least𝑠𝑖𝑛(𝑥)
three additions/subtractions, but I’d love to be proven wrong…

Results
We’ve reduced the calculation of and from 18 multiplications and 1 division, to 5𝑠𝑖𝑛(𝑥) 𝑐𝑜𝑠(𝑥)
multiplications and no division. Based on those operations alone, a theoretical speedup of 7.6x
could be achieved for AVX-512 code, or 4.8x for AVX-128 on Intel Skylake (division is slower for
AVX-512 because the execution units are not full width). In practice, I’ve measured a 4.1x
speedup for AVX-128 using SwiftShader’s benchmarks.

Note this is the result compared to the vectorizable high-precision implementation by
Mendenhall. Compared to the standard C/C++ sin() and cos() functions we’re looking at well
over 20x per scalar.

