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Introduction   
SwiftShader  is  a  conformant  implementation  of  the   Vulkan  graphics  API  which  runs  entirely  on               
the  CPU.  We’ve   identified  transcendental  functions,  and  in  particular  the  exponential   and              
logarithm,   to   require   optimization.   

Objective   
Vulkan   specifies  that  the  single-precision  (32-bit)  result  of  the   exp(x)  and   exp2(x)  shader               
operations  must  have  an  accuracy  of    ULP  (note  that  Vulkan  uses  precision  and         ×   3 + 2 x| |         
accuracy    interchangeably).    log(x)    and    log2(x)    have   similar   tolerances.   

The   new   implementations   will   also   have   to   be   vectorizable   to   take   advantage   of    wide   SIMD .   

ULP:   Discontinuous   Relative   Error   Measure   
Before  we  dive  into  any  implementation  details,  we  need  to  fully  understand  the  requirements.                
Vulkan  defines  the  error  tolerance  for   exp2  and   log2  in  terms  of  ULP,  or   Units  in  the  Last                    
Place .  1  ULP  is  essentially  the  smallest  representable  difference  in  floating-point  values.  Note               
that  this  is  relative  to  the  value  we’re  comparing  against.  Hence  it  is  not  a  constant,  but  a                    
function.  It  is  convenient  for  a  specification  to  drop  the  function  parameter  and  just  imply  it.  That                   
said,  I’ll  use  ULP  when  talking  about  the  error  at  a  given  point  or  the  maximum  error  over  an                     
interval,  and  use   to  denote  the  function.  The  image  below,  produced  using  the  excellent     lp(x)u             
Desmos   graphing   calculator ,   illustrates     for   a   single-precision   (32-bit)   value:  lp(x)u  

https://www.vulkan.org/
https://issuetracker.google.com/169754022
https://www.khronos.org/registry/vulkan/specs/1.2/html/vkspec.html#spirvenv-precision-operation
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://docs.google.com/document/d/1GGJxTkz3rPRNWkrLOFuT-8HtH-wFJ_or24f6CjBDKMs/edit#bookmark=id.e50jhgbl2jpa
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.desmos.com/calculator


  

It  is  discontinuous  due  to  the  last  manissa  bit  having  a  2×  difference  in  numerical  value  between                   
every  consecutive  exponent  value.  Note  that  it  is  a  fractal;  zooming  closer  to  0  gives  us  ever                   
smaller  line  segments  2×  shorter  but  also  2×  lower  in  y-axis  value.  That  said,  we  can  observe                   
that   is  roughly  linear  in  .  Therefore  by  first  approximation  it  can  be  considered  a   lp(x)u      x           
measure   of   the   relative   error.   

Since  the  ULP  is  relative  to  the   result  of  a  function,  we  have  to  use  that  function  as  the  input  to                       
the     function.   For   example   for     we   get   :  lp(x)u xp (x)e 2 lp(exp (x))u 2  

  

Note  how  for   in  ,  1  ULP  is  a  constant  .  In  other  words,  an  absolute  error!  However,     x   0, 1)[          2 ­23         
Vulkan  tolerates  an  error  of  ,  and  when  we  take  that  into  account  we  get  our  final  error        ×   3 + 2 x| |              
bounds:   



  

Globally   this   still   curves   like   ,   but   locally   these   are   sloped   linear   segments.  2x  

Finally,  note  that  ULP  is  also  a  function  of  the  precision  of  the  floating-point  format  we’re  using                   
(or  comparing  it  against).  A  single-precision   float  has  23  mantissa  bits,  while  a  64-bit   double                 
has  53  mantissa  bits.  Then  there’s  also  16-bit  half-precision,  which  typically  has  10  mantissa                
bits.  Note  that  one  can  store  a  half-precision  value  in  a  32-bit  float,  or  evaluate  the  ULP  error  of                     
a  32-bit  value  more  precisely  by  comparing  it  against  a  value  computed  in  64-bit.  Where  useful,                  
I’ll   discern   between   these   precisions   as   ULP-32   and   ULP-16.   

Exp2   Range   Reduction   
The  mathematical  identity   lends  itself  for  computing  the   of     xp (x ) xp (x ) xp (x )  e b 1 + x2 = e b 1 · e b 2       xpe 2   
the  integer  and  the  fractional  part  of  the  argument  separately.  That  is,              

,  where   and  .  The   of  the  integer   is  xp (x ) xp (x ) xp (x )  e 2 i + xf = e 2 i · e b f   loor(x)xi = f    xf = x ­ xi   xpe 2     xi   
trivial  to  compute:  just  put  it  in  the  exponent  field  of  the  binary  representation  of  a  floating-point                   
value   (adjusted   for   the   bias),   with   mantissa   0.   

The  IEEE  754  binary  representation  of  a  single-precision  floating-point  number  consists  of  a               
sign   bit,   an   8-bit   exponent   field,   and   a   23-bit   mantissa   field:   

  

(By   Vectorization:   Stannered   -   Own   work   based   on:   Float   example.PNG,   CC   BY-SA   3.0,    https://commons.wikimedia.org/w/index.php?curid=3357169 )   

So   the   C++   code   to   compute   the   exponential   of   the   integer   part   becomes:   

i   =   (int)floor(x);   
exp2i   =   bit_cast<float>((i   +   127)   <<   23);   

https://commons.wikimedia.org/w/index.php?curid=3357169


Computing  the   of  the  fractional  part  of  the  argument  means  we  only  have  to  deal  with    xpe 2                
values  in  the   interval.  In  other  words,  we  need  to  find  an  approximation  for  the  segment     0, 1)[                 
shown  below,  and  make  sure  the  error  stays  below  the  corresponding  segment  in  the  graph                 
above.   

  

We  could  resort  to  using  a  polynomial  which  satisfies  several  arbitrarily  chosen  conditions,  like                
I’ve  done  for  the  implementation  of   sine  and  cosine .  Unfortunately,  for  simple  conditions  like               
matching   at  equidistant  points,  such  an  algebraic  solution  requires  a  fairly  high  degree   xp (x)e 2              
for   the   polynomial   to   have   an   error   of   only   a   few   ULP.   

Instead  we’re  better  off  using  an  algorithmic  solution  for  the  polynomial  which  best  fits  this                 
curve.  The   Remez  algorithm  computes  such  a  “minimax”  polynomial.  We’ll  be  using  the               
LolRemez   program.  It’s  a  great  open-source  implementation  of  the  Remez  algorithm  with  useful               
features   and   a   simple   command-line   interface.   

We   need   a   5th   degree   polynomial   to   satisfy   Vulkan’s   accuracy   requirement:   

$   ./lolremez   --float   -d   5   -r   "0:1"   "2^x"   
//   Approximation   of   f(x)   =   2^x   
//   on   interval   [   0,   1   ]   
//   with   a   polynomial   of   degree   5.   
//   p(x)=((((1.8964611e-3*x+8.942829e-3)*x+5.5866246e-2)*x+   

https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
https://en.wikipedia.org/wiki/Remez_algorithm
http://lolremez/


//          2.4013971e-1)*x+6.9315475e-1)*x+9.9999989e-1   
float   f(float   x)   
{   
     float   u   =   1.8964611e-3f;   
     u   =   u   *   x   +   8.942829e-3f;   
     u   =   u   *   x   +   5.5866246e-2f;   
     u   =   u   *   x   +   2.4013971e-1f;   
     u   =   u   *   x   +   6.9315475e-1f;   
     return   u   *   x   +   9.9999989e-1f;   
}   

  
Plotting   the   error,   we   get:   

  

At   first   look,   it   may   appear   the   maximum   error   is   just   1.0   ULP!   

In  reality,  it’s  actually  2.56  ULP  when  using   binary32  floating-point  arithmetic.  This  is  caused  by                 
rounding  errors  introduced  in  the  polynomial’s  multiplications,  and   loss  of  significance  in  the               
additions.  When  we  look  at  the  error   relative  to  Vulkan’s  tolerance,  which  I’ll  call  the  ‘margin’,  it                   
peaks  at  0.855.  Quite  a  bit  worse  than  what  we’d  expect  from  looking  at  the  above  pretty  graph,                    
but  still,  any  worst  case  margin  value  below  1.0  is  within  Vulkan’s  requirements.  Further                
improvements   on   this   are   just   a   bonus.   

https://en.wikipedia.org/wiki/Single-precision_floating-point_format#IEEE_754_single-precision_binary_floating-point_format:_binary32
https://en.wikipedia.org/wiki/Loss_of_significance


Integer   Exactness   
One  issue  with  the  above  solution  is  that   does  not  equal  1.0  as  expected.  Nor  do  any          xp (0)e 2           
other  integer  input  values  result  in  exact  powers  of  2.  While  Vulkan  doesn’t  spell  this  out  as  a                    
requirement,   applications   expect   it,   and   it   appears   to   be   standard   across   GPU   implementations.   

The  problem  with  the  current  polynomial  is  that  the  constant  coefficient  added  at  the  end  is  not                   
1.0  but  slightly  less.  We’d  really  like  a  polynomial  of  the  form  ,  where   is  a              (x)  f · x + 1   (x)f    
different   Remez-optimized   polynomial.   Since   we   want     to   approximate   ,   we   get:   (x)  f · x + 1 2x   

 (x)  f · x + 1 ≈ 2x  

 (x) 2 )   x  f ≈ ( x ­ 1 /  

In  other  words,  we  ask  the  Remez  algorithm  to  approximate   in  the  interval  .            2 )   x  ( x ­ 1 /     0, ][ 1  
Since  we’re  already  multiplying   by  ,  let’s  see  if  we  can  have  our  cake  and  eat  it  by  trying      (x)f   x               
to   make   the   new     a   4th   degree   polynomial:  (x)f  

$   ./lolremez   --float   -d   4   -r   "0:1"   "(2^x   -   1)   /   x"   
//   Approximation   of   f(x)   =   (2^x   -   1)   /   x   
//   on   interval   [   0,   1   ]   
//   with   a   polynomial   of   degree   4.   
//   p(x)=(((1.7909619e-3*x+9.1942073e-3)*x+5.5660287e-2)*x+   
//         2.4020655e-1)*x+6.9314759e-1   
float   f(float   x)   
{   
     float   u   =   1.7909619e-3f;   
     u   =   u   *   x   +   9.1942073e-3f;   
     u   =   u   *   x   +   5.5660287e-2f;   
     u   =   u   *   x   +   2.4020655e-1f;   
     return   u   *   x   +   6.9314759e-1f;   
}   

Note  that  the  formula  this   f(x)  approximates  is  undefined  for  ,  but   LolRemez   still  arrives            x = 0      
at   a   solution.   Plotting   the   resulting   error:  



  

Looks   good   enough,   right?   Unfortunately,   no,   the   margin   is   exceeded   by   1.56.   

Interestingly  this  happens  for  a  very  small  negative  value  of  .  Despite  our  algorithm  now  giving            x       
the  exact  result  for  ,  for  small  negative   values  we’re  computing  .  In      x = 0     x     xp (­ ) xp (x )  e 2 1 · e 2 + 1   
other  words  our  polynomial  gets  evaluated  for  a  value  near  1,  where  its  error  is  the  greatest.                   
Meanwhile,  left  of   the  error  tolerance  is  much  narrower.  It’s  ~3  ULP,  but  half  as  much  in     x = 0                
absolute  value  compared  to  the  ULP  for  small  positive  x  values.  While  so  the              xp (­  e 2 1) .5= 0     
error  is  also  reduced  by  a  factor  of  2,  it  essentially  means  we  need  to  keep  things  below  3  ULP                      
across  the  interval  of  the  polynomial;  Vulkan’s  extra  tolerance  of  an  additional   ULP               ×   2 x| |   
doesn’t   really   help   us   here.   

We   could   try   making   the   error   near     smaller,   or   address   the   asymmetry   issue.   Or   both?  x = 1  

Watch   your   Weight   
While  the  basic  Remez  algorithm  always  optimizes  the  polynomial  to  have  the  minimum               
maximum  absolute  error,  i.e.  a  constant  across  the  interval  it  is  optimizing  for,  it’s  relatively  easy                  
to   “shape”   the   error   envelope   by   using   a    weight   function .   

Note  that  the LolRemez   program  considers  the  weight  function  to  define  the  allowed  relative                
tolerance.  A   larger  weight  in  a  certain  region  means  the  polynomial  will  be   less  accurate  there.                  
Others  consider  the  weight  function  to  define  the  inverse  of  that,  which  might  sound  more                 
natural  as  a  “weight”,  but  is  less  intuitive  when  trying  to  match  a  given  tolerance  function.  Just                   
think   of    LolRemez ’s     weight   function   as   “tolerance”   and   it   becomes   both   intuitive   and   practical.   

https://github.com/samhocevar/lolremez/wiki/Tutorial-2-of-5%3A-switching-to-relative-error
https://arxiv.org/pdf/0803.0439.pdf


So  what  weight  function  should  we  use  for  our   exp2()  approximation?  As  noted  earlier,                 lp(x)u  
is  actually  constant  across  the   interval.  And  the  error  graph  for  the  5th  degree  polynomial       0, )[ 1            
approximation  of   clearly  stays  within  a  band  of  ~1.0  ULP.  But  when  we  started  using    2x               

 instead,  the  error  near   became  0  but  then  appears  to  get  larger  with  increasing  (x)  f · x + 1      x = 0            
x.  That’s  no  coincidence.  With   optimized  for  a  constant  error,  the  multiplication  by        (x)f          x  
“squeezes”  the  error  to  become  zero  at   and  then  linearly  grows.  To  undo  that,  we  need  to         x = 0            
use     as   the   weight   function.  x  1/  

The   result   looks   like   this:   

$   ./lolremez   --float   -d   4   -r   "0:1"   "(2^x-1)/x"   "1/x"   
//   Approximation   of   f(x)   =   (2^x-1)/x   
//   with   weight   function   g(x)   =   1/x   
//   on   interval   [   0,   1   ]   
//   with   a   polynomial   of   degree   4.   
//   p(x)=(((1.8852974e-3*x+8.9733787e-3)*x+5.5835927e-2)*x+   
//         2.4015281e-1)*x+6.9315247e-1   
float   f(float   x)   
{   
     float   u   =   1.8852974e-3f;   
     u   =   u   *   x   +   8.9733787e-3f;   
     u   =   u   *   x   +   5.5835927e-2f;   
     u   =   u   *   x   +   2.4015281e-1f;   
     return   u   *   x   +   6.9315247e-1f;   
}   



  

Magnificent!  In  practice  the  single-precision  results  are  also  good:  2.66  ULP  and  a  margin  value                 
of   0.85.   

Enjoy   that   extract-at-integers   cake   (but   keep   watching   your   weight)!   

Symmetrical   Range   Reduction   
While  we  can  tweak  the  weight  function  a  bit  to  achieve  slightly  better  results,  recall  that  the                   
asymmetry  between  small  negative  values  of  x  and  small  positive  values  forced  us  to  practically                 
ignore  the   part  of  Vulkan’s  tolerance.  Also  the  numerical  losses  are  greater  near  x=1  so     ×   2 x| |               
counter  to  Vulkan’s  formula  things  only  improve  when  making  the  weight  function  smaller  near                
that  end.  Can  we  avoid  having  small  negative  values  of   “wrap  around”  to  evaluate  the            x       
polynomial   near   1?   

Fortunately,  yes.  The  mathematical  identity   allows   to  be  split       xp (x ) xp (x ) xp (x )  e 2 1 + x2 = e 2 1 · e 2 2   x     
into   any  sum  of  values  that  add  up  to  .  The  pair  of   and   was  an  obvious           x     loor(x)f   loor(x)  x ­ f     



first  choice,  but  it  results  in  skewing  the  second  term  to  be  in  the   interval.  We  can  instead                0, )[ 1      
use     and   ,   which   gives   us   a   interval   for   the   latter.  ound(x)r ound(x)  x ­ r ­ .5, .5]  [ 0 0  

Aside  from  replacing   floor(x)  with   round(x) ,  we  just  have  to  update  our  polynomial  with  the                 
result    LolRemez    produces   when   shifting   the   interval   to   :  ­ .5, .5]  [ 0 0  

$   ./lolremez   --float   -d   4   -r   "-0.5:0.5"   "(2^x-1)/x"   "1/x"   
//   Approximation   of   f(x)   =   (2^x-1)/x   
//   with   weight   function   g(x)   =   1/x   
//   on   interval   [   -0.5,   0.5   ]   
//   with   a   polynomial   of   degree   4.   
//   p(x)=(((1.3407259e-3*x+9.6718751e-3)*x+5.5503084e-2)*x+   
//         2.4022235e-1)*x+6.9314721e-1   
float   f(float   x)   
{   
     float   u   =   1.3407259e-3f;   
     u   =   u   *   x   +   9.6718751e-3f;   
     u   =   u   *   x   +   5.5503084e-2f;   
     u   =   u   *   x   +   2.4022235e-1f;   
     return   u   *   x   +   6.9314721e-1f;   
}   

  

This  produces  an  effective  ULP  error  of  2.80,  which  is  slightly  worse  than  our  previous  best  of                   
2.66   ULP.   However,   the   ‘margin’   measure   improved   from   0.85   to   0.73.   

But  that’s  far  from  the  best  achievable  result.  The  weight  function  for  the  above  polynomial  was                 
still  ,  or  just  a  constant  1  when  taking  the  subsequent  multiplication  by   into  account.  We   x  1/             x     



could  use  e.g   as  the  numerator  instead,  to  practically     0.25 rf (1000 ) .75) 3 )  ( · e · x + 0 · ( + 2 · x| |        
match   the   shape   of   Vulkan’s   tolerance   function.   This   gives   us   2.29   ULP   and   a   0.59   margin.   

While  that  weight  function  should  theoretically  produce  the  best  result,  practice  disagrees  once               
again.  With  a  bit  of  trial  and  error,  I  found  that  a  weight  function  of   produces  an                 3 .5 )   x  ( + 3 · x /    
even   better   result:   1.88   ULP,   and   0.54   margin.   

Watch   your   Extremities   
There’s  a  subtle  problem  with  computing   as  .  For        xp (x)e 2   xp (round(x)) xp (x ound(x))  e 2 · e 2 ­ r    
example  for  ,  the  first  term  would  overflow  to  infinity,  and  while  the  second  term    27.7x = 1              
evaluates  to  0.648,  the  end  result  is  still  infinity.  Meanwhile   can  be            xp (127) xp (0.7)  e 2 · e 2    
computed   as   a   normal    binary32    value   just   fine.  

Many  applications  won’t  care  about  this,  but  some  do.  The  Vulkan  conformance  test  suite                
checks  the  result  for  these  kinds  of  input  values.  Note  also  that   is  typically  computed  as              xp(x)e      

,  and   as  ,  which  creates  several  more  opportunities  for  xp (1 ln(2) )  e 2 / · x   ow(x, )p y   xp (y og (x))  e 2 · l 2        
overflow   or   underflow   when   the   result   should   still   be   representable.   

Note  that  we  could  compute  the  equivalent   at  no  extra         xp (round(x) ) 2 xp (x ound(x)))  e 2 ­ 1 · ( · e 2 ­ r     
cost  and  no  loss  of  accuracy,  and  it  avoids  intermediate  overflow,  but  it  suffers  from  underflow.                  
Note  that  Vulkan  does  not  require  support  for   subnormal  floating-point  numbers,  while  many               
CPUs  do  support  them,  so  this  can  help  avoid  prematurely  returning  0.0  for  large  negative  input                  
values.  Unfortunately  computations  involving  subnormal  numbers  can  incur  a  performance            
penalty,   and   so   it’s   desirable   to   enable   the   CPU’s    flush-to-zero    mode.   

Alas,  this  means  the  round()-based  implementation  of  exp2()  is  not  really  suitable  for  a  Vulkan                 
implementation   on   the   CPU,   despite   its   attractive   properties.   

In  any  case,  we  need  to  clamp  the  range  of  the  input  argument  to  ensure  we  overflow  to  the                     
proper    representation    of   infinity   (and   not    NaN ),   and   underflow   to   0   (and   not   a   negative   number).   

Note  that  a  GPU-based  implementation  typically  obtains  polynomial  coefficients  from  a  table,              
and  thus  optimizes  them  for  different  intervals.  We  could  do  something  similar  on  the  CPU,  but                  
clearly  it  would  be  much  more  costly  than  simply  improving  precision  through  a  higher  degree                 
polynomial.   

Relaxing   with   a   Halfling   
While  we’ve  reached  the  limits  of  improving  accuracy  without  adding  more  computational  cost,               
we  can  reduce  the  cost  by  sacrificing  accuracy.  Fortunately  Vulkan  and  SPIR-V  have  just  the                 
thing  to  allow  for  that:   Relaxed  Precision .   GLSL  4.6  supports  expressing  relaxed  precision               
requirements  through  the   mediump  qualifier.  It  essentially  reduces  the  accuracy  requirement  to              
that  of  the  half-precision   binary16  format,  while  still  producing  32-bit  results.  Specifically  for               

https://en.wikipedia.org/wiki/Subnormal_number
https://en.wikipedia.org/wiki/Subnormal_number#Disabling_subnormal_floats_at_the_code_level
https://en.wikipedia.org/wiki/IEEE_754#Binary
https://en.wikipedia.org/wiki/NaN
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#_relaxed_precision
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16


 the  tolerance  becomes  ULP.  Note  this  is  in  ULP-16,  which  is  much  coarser  xp (x)e 2    1  × |x|    + 2            
than   a   ULP-32.   

Hitting  this  accuracy  requirement  is  easily  feasible  with  a  3rd  degree  polynomial  (2nd  degree                
when   factoring   out   x   to   still   get   exact   results   at   integer   values):   

$   ./lolremez   --float   -d   2   -r   "0:1"   "(2^x-1)/x"   "1/x"   
//   Approximation   of   f(x)   =   (2^x-1)/x   
//   with   weight   function   g(x)   =   1/x   
//   on   interval   [   0,   1   ]   
//   with   a   polynomial   of   degree   2.   
//   p(x)=(7.8145574e-2*x+2.2617357e-1)*x+6.9555686e-1   
float   f(float   x)   
{   
     float   u   =   7.8145574e-2f;   
     u   =   u   *   x   +   2.2617357e-1f;   
     return   u   *   x   +   6.9555686e-1f;   
}   

  

This  achieves  0.13  ULP,  and  could  be  tuned  a  bit  to  trade  ULP  for  an  improved  ‘margin’  result,                    
but  I  kind  of  like  the  universality  of  ULP  versus  Vulkan’s  seemingly  arbitrarily  sloping  tolerance                 
function.   

So  we  save  two  multiplies  and  two  additions,  or  two   fused  multiply-add  (FMA)  operations.  It’s                 
significant,   but   we’re   still   left   with   requiring   quite   a   lot   of   other   instructions:   

https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation#Fused_multiply%E2%80%93add


float   exp2_relaxed(float   x)   
{   
     x   =   min(x,   128.0f);   
     x   =   max(x,   bit_cast<float>(0xC2FDFFFF));    //   -126.999992   
  

     float   x0   =   floor(x);   
     int   i   =   (int)x0;   
     float   f   =   x   -   x0;   
  

     //   Add   single-precision   bias,   and   shift   into   exponent.   
     float   exp2i   =   bit_cast<float>((i   +   127)   <<   23);   
  

     const   float   a   =   7.8145574e-2f;   
     const   float   b   =   2.2617357e-1f;   
     const   float   c   =   6.9555686e-1f;   
     float   exp2f   =   fma(fma(fma(a,   f,   b),   f,   c),   f,   1.0f);   
  

     return   exp2i   *   exp2f;   
}   

Note  I’m  only  using   fma()  here  to  illustrate  the  theoretical  cost.  The  standard  C++  function  may                  
incur   call   overhead   and   may   actually   be   implemented   using   double-precision   operations.   

Looking  at  the  line  to  compute   exp2i ,  there’s  an  addition  and  a  shift  operation.  A  shift  left  is  just                     
a  multiplication  by  a  power  of  2.  So  let’s  replace  these  two  instructions  with  a  single  FMA                   
operation:   

float   exp2i   =   bit_cast<float>((int)fma(x0,   1   <<   23,   127   <<   23));   

Note  how  this  takes  a  float  as  input  and  returns  a  float,  but  the  input  is  expected  to  be  a  value                       
without  a  fractional  part.  What  would  happen  if  it  did  have  a  fractional  part?  The  fraction  would                   
get  multiplied  by ,  resulting  in  a  value  always  smaller  than  ,  then  it  gets  converted  to  an     223         223        
integer,  and  ends  up  in  the  mantissa  field  of  the  result  (while  the  integer  part  of  the  input  still                     
ends  up  in  the  exponent  field,  with  the  bias  added).  This  gets  interpreted  as  ,  meaning                1 )  2i · ( + f   
the  fractional  part  causes  linear  interpolation  between  the  powers  of  2.  It’s  an  approximation  of                 

  all   in   itself!  2x  

https://en.cppreference.com/w/cpp/numeric/math/fma


    

To  compute   instead,  where   equals  our  original  ,  we  see  that      2i+xf = 2i · 2xf    i + xf     x     1 )( + f = 2xf  

and  thus   is  the  new  fraction  we  should  be  using.  This  can  be  achieved  either  by     f = 2xf ­ 1                
adding  it  to   ,  or  by  adding   to  .  Note  that  in  either  of  these  cases,  or   can     loor(x)f      f ­ xf   x         f    f ­ xf   
be   efficiently   computed   as   a   polynomial.   The   choice   appears   arbitrary…   

float   exp2_relaxed(float   x)   
{   
     x   =   min(x,   128.0f);   
     x   =   max(x,   bit_cast<float>(0xC2FDFFFF));    //   -126.999992   
  

     float   f   =   x   -   floor(x);   
  

     //   Polynomial   which   approximates   (2^f-f-1)/f.   
     const   float   a   =   7.8145574e-2f;   
     const   float   b   =   2.2617357e-1f;   
     const   float   c   =   -3.0444314e-1f;   
     float   r   =   fma(fma(a,   f,   b),   f,   c);   
  

     //   Final   multiplication   by   f,   then   add   to   x.  
     float   y   =   fma(r,   f,   x);   
  

     return   bit_cast<float>((int)fma(y,   1   <<   23,   127   <<   23));   
}   



This  code  not  only  eliminates  the  integer  addition  and  shift,  it  also  avoids  an  extra  multiplication,                  
as   well   as   loading   the   1.0f   constant.   The   accuracy   is   still   the   same   as   the   one   above.   

Gaining   Significance  
Wait   a   sec…   the   same   optimization   could   also   be   applied   to   the   high   accuracy   version,   right?   

Not  really.  I've  previously  mentioned  FMA  operations  only  in  the  context  of  improving               
performance.  If  I  replace  the   fma()  calls  in  the   exp2_relaxed()  with  multiplies  and  additions,                
the  achieved  accuracy  remains  the  same.  But  when  we  use  the  same  algorithm  for  the  high                  
accuracy  version  (i.e.  using  the  higher  degree  polynomial),  the  ULP-32  error  increases  to  33.4,                
failing  to  meet  Vulkan’s  requirement.  This  result  is  obtained  with  both  separate  multiplies  and                
additions,   and   with   32-bit   FMA   operations,   like   the   one   below   for   x86   CPUs   supporting    FMA3 .   

#include   <immintrin.h>   
  

float   fma32(float   x,   float   y,   float   z)   
{   
     return   bit_cast<float>(_mm_extract_ps(_mm_fmadd_ss(   
         _mm_set1_ps(x),   _mm_set1_ps(y),   _mm_set1_ps(z)),   0));   
}   

Using   a   higher   degree   polynomial   doesn’t   help   either.   It’s   only   when   the   last   FMA   operation   —   
the   one   where   we   multiply   by    1   <<   23    for   the   mantissa   shift   and   add    127   <<   23    for   the   
exponent   bias   —   is   replaced   using   integer   addition,   that   we   get   a   Vulkan   conformant   
implementation:   

//   lolremez   --float   -d   4   -r   "0:1"   "(2^x-x-1)/x"   "1/x"   
float   P(float   x)   
{   
     float   u   =   1.8852974e-3f;   
     u   =   u   *   x   +   8.9733787e-3f;   
     u   =   u   *   x   +   5.5835927e-2f;   
     u   =   u   *   x   +   2.4015281e-1f;   
     return   u   *   x   +   -3.0684753e-1f;   
}   
  

float   exp2(float   x)   
{   
     x   =   min(x,   128.0f);   
     x   =   max(x,   bit_cast<float>(0xC2FDFFFF));    //   -126.999992   
  

https://en.wikipedia.org/wiki/FMA_instruction_set#FMA3_instruction_set


     float   f   =   x   -   floor(x);   
     float   y   =   P(f)   *   f   +   x;   
  

     return   bit_cast<float>((int)(y   *   (1   <<   23))   +   (127   <<   23));   
}   

This  achieves  an  excellent  accuracy  of  2.15  ULP  (2.06  when  using   fma32() ).  The  reason                
behind  this  gain  —the  last  fully  conformant  result  was  2.66  ULP—  is  that  instead  of  doing  a                   
multiplication  by  a  polynomial  approximation  for  a  function  which  ranges  between  1.0  and  2.0,                
we’re   adding  an  approximation  for  a  function  which  ranges  between  0.0  and  -0.0861.  The                
former  is  inevitably  only  accurate  to   since  only  the  mantissa  value  changes  in  this  range,         2­23           
and   this   results   in   a   0.5   ULP   rounding   error.   

Note  that  it  also  matters  a  lot  now  that  we’re  computing   and  adding  it  to   ,  instead  of              2f ­ f ­ 1      x    
computing     and   adding   it   to   .   2f ­ 1 loor(x)f  

In  terms  of  performance,  we’ve  only  really  eliminated  a  shift  operation  and  loading  one  fewer                 
constants.  Note  that  the  multiplication  by   1  <<  23  is  still  done  in  floating-point  because  32-bit                    
integer   SIMD   multiplication   may   get   split   into   multiple   µops.   

Logarithm   =   Exponential -1   

For   computing   ,   let’s   first   take   a   look   at   Vulkan’s   precision   requirements:   “3   ULP   outside  og (x)l 2  
the   range   [0.5,2.0].   Absolute   error   <   2 -21     inside   the   range   [0.5,2.0].”   Plotting   this   gives   the   
following   result:   

  

The   blue   segments   are   the   ULP   error,   while   the   red   segments   are   the   absolute   error.   Note   that   
the   ULP   error   tolerance   approaches   zero   near   ,   but   it’s   overridden   by   the   larger   absolute  x = 1  
error   tolerance.   And   specifically   in   the   interval     the   tolerance   is   3   ULP,   which   translates   to  2, )[ 4  
an   absolute   error   of   .   3 · 223  



 is  the  inverse  of  ,  meaning  that  .  This  also  shows  in  their  og (x)l 2      xp (x)e 2    og (exp (x))l 2 2 = x       
fundamental  identity  for  range  reduction;  above  we  relied  on  ,           xp (x ) xp (x ) xp (x )  e 2 1 + x2 = e 2 1 · e 2 2  
while  with  logarithms  the  roles  of  addition  and  multiplication  are  reversed;             

.  og (x ) og (x ) og (x )  l 2 1 · x2 = l 2 1 + l 2 2  

An  efficient  implementation  can  be  based  on   which         og (2 1 )) og (2 ) og (1 )  l 2
e · ( + m = l 2

e + l 2 + m   
simplifies  to  ,  where   is  the  (unbiased)  exponent  and   is  the  mantissa  of  the    og (1 )e + l 2 + m   e       m       
input  argument.  Note  again  the  similarity  with  :  instead  of  inserting  the  exponent  into  the         xp (x)e 2         
result,   for     we   extract   the   exponent   from   the   input.  og (x)l 2  

This  “extracting”  of  the  exponent  can  be  done  by  interpreting  the  input  argument  as  an  integer,                  
subtracting   127  <<  23 ,  casting  it  to  floating-point,  and  multiplying  by   1.0f  /  (2  <<  23) .                        
Sound  familiar?  It’s  exactly  the  inverse  steps  of  the  last  line  of  the   exp2()  implementation                 
above.  And  unless  we  call   floor()  on  this  result  to  retain  just  the  exponent  value,  we  have  a                    
piecewise   linear   approximation   of     that   is   exact   at   powers   of   2:  og (x)l 2  

  

The  next  step  is  inverting   y  =  P(f)  *  f  +  x.  Note  that   f  is  the  fraction  of   x ,  and  for   x  in  the                                 
interval   we  can  also  write   y  =  P(x)  *  x  +  x .  This  formula  is  now  an  ordinary  5th   0, )[ 1                          
degree  polynomial.  Unfortunately,  solving  that  for   x  is  the  equivalent  of  finding  the  roots,  and                 
this   is    not   generally   solvable ,   let   alone   produce   a   reasonably   low-degree   polynomial.   

Let’s  take  a  step  back  here.   P(f)  *  f  was  an  approximation  of  ,  so  the  exact                  2f ­ f ­ 1     
formula  is  .  Solving  that  for   we  get  .  Remember,  this  is  only  correct    xp (x)  y = e 2 ­ 1     x    og (y)l 2 + 1       
for  the   output   in  the  range  ,  which  corresponds  to  the   input   in  the  interval  .     x     0, )[ 1       y     1, )[ 2  
Recall  that   is  the  result  of  the  piecewise  linear  approximation,  so  our  actual  input  interval  for    y                
which  this  algorithm  is  correct  is  .  To  be  exact  at  powers  of  2,  namely   and  thus        2, )[ 4          x = 2    y = 1
,  we’re  looking  for  an  approximation  of  the  form  .  In  other  words           (y) y )  P · ( ­ 1 + 1     

.  (y) og (y)   (y )  P ≈ l 2 / ­ 1  

Entering   this   into    LolRemez ,   for   various   polynomial   degrees    D ,   we   get   the   following   results:   

https://en.wikipedia.org/wiki/Quintic_function#Finding_roots_of_a_quintic_equation


$   ./lolremez   --float   -d    D    -r   "2:4"   "log2(x)/(x-1)"   "1/(x-1)"   

Yikes!  For   a  polynomial  of  4th  degree  sufficed  (5  when  including  the  final  multiplication)    xp (x)e 2              
to  get  below  3  ULP-32,  but  for   we  never  get  to  single-digit  ULP  errors,  not  even  with         og (x)l 2            
FMA  operations.  Fortunately  things  look  fine  for  relaxed  precision,  as  an  ULP-16  below  1  is                 
achieved   with    D =2,   just   like   for   .  xp (x)e 2  

Second   Try   
Part  of  the  problem  for  the  high-precision  version  is  that  logarithmic  functions  are  fundamentally                
not  that  easy  to  approximate  with  ordinary  polynomials.  In  fact  a   Taylor  series  centered  at                  x = 1  
never  converges  past  .  It’s  not  hard  to  see  that   more  closely  resembles  the  square     x = 2        og (x)l 2       
root  ( )  or  reciprocal  function  ( ),  so  a  polynomial  with  increasing  integer  powers  isn't  great   x0.5      x­1           
at  approximating  it,  even  in  a  limited  interval.  A  second  important  observation  is  that  the  signs  of                   
the  coefficients  of  the  polynomial  approximation  alternate,  which  creates  subtractions  which             
cause   large   losses   of   significance.   For   example   for   degree   5:   

$   ./lolremez   --float   -d   5   -r   "1:2"   "log2(x)/(x-1)"   "1/(x-1)"   
//   Approximation   of   f(x)   =   log2(x)/(x-1)   
//   with   weight   function   g(x)   =   1/(x-1)   
//   on   interval   [   1,   2   ]   
//   with   a   polynomial   of   degree   5.   
//   p(x)=((((-2.645745e-2*x+2.5573874e-1)*x-1.0379186)*x+   
//          2.3021687)*x-3.0995312)*x+3.048553   
float   f(float   x)   
{   
     float   u   =   -2.645745e-2f;   
     u   =   u   *   x   +   2.5573874e-1f;   

   ULP-32   over   [2,4)    with   FMA    ULP-16   

D =1          6.47766   

D =2          0.78980   

D =3    862.56       0.10535   

D =4    124.86       0.015259   

D =5    25.176    22.872    0.0030518   

D =6    26.249    21.116    0.0031738   

D =7    54.680    40.117      

https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm
https://en.wikipedia.org/wiki/Logarithm#Calculation


     u   =   u   *   x   +   -1.0379186f;   
     u   =   u   *   x   +   2.3021687f;   
     u   =   u   *   x   +   -3.0995312f;   
     return   u   *   x   +   3.048553f;   
}   

This   function   ranges   between   1.436   and   1.0,   meaning   that   only   22   of   the   mantissa   bits   play   a   
role,   out   of   the   entire   32-bit   format.   Meanwhile   for   the   computation   of     we   used   a  xp (x)e 2  
“correction”   term   which   ranges   between   0.0   and   0.086,   which   uses   a   much   larger   portion   of   the   
binary32 ’s   representable   range.   

Can   we   do   something   similar   for   ?   Here’s   the   difference   between   the   linear  og (x)l 2  
approximation   and   the   actual   logarithm:   

  

The  black  graph  shows  “hops”  which  are  the  same  shape  between  each  power  of  2.  This                  
corresponds  with  the  normalized  mantissa  varying  between  0.0  and  1.0.  Moreover,  this  graph               
only   ranges   between   0.0   and   0.086,   just   like   ’s   correction   term.  xp (x)e 2  

It  corresponds  to  ,  where   is  the  mantissa.  Once  again  to  get  exactness  at     og (m )  l 2 + 1 ­ m   m           
powers  of  2,  we  separate  out  a  final  multiplication  and  adjust  the  weight  accordingly,  and  we                  
get:   

//   lolremez   --float   -d   6   -r   "0:1"   "(log2(x+1)-x)/x"   "1/x"   
float   P(float   x)   
{   

float   u   =   1.5529917e-2f;   
u   =   u   *   x   +   -7.9557731e-2f;   
u   =   u   *   x   +   1.9429432e-1f;   
u   =   u   *   x   +   -3.2590197e-1f;   



u   =   u   *   x   +   4.7355341e-1f;   
u   =   u   *   x   +   -7.2058547e-1f;   
return   u   *   x   +   4.4266783e-1f;   

}   
  

float   log2(float   x)   
{   
     int   im   =   bit_cast<int>(x);   
     float   y   =   (float)(im   -   (127   <<   23))   *   (1.0f   /   (1   <<   23));   
  

     float   m   =   (float)(im   &   0x007FFFFF)   *   (1.0f   /   (1   <<   23));   
  

     return   P(m)   *   m   +   y;   
}   

This  gives  us  an  effective  ULP  error  of  3.71  in  the   interval.  Much  better!  But  still  not  below             2, )[ 4         
3,  despite  already  using  a  2  degrees  higher  polynomial  than  .  Let’s   plot  the  error  to  see            xp (x)e 2        
what’s   going   on:   

  

That’s  odd…  the  (blue)  error  graph  stays  within  the  tolerance  bounds  at  all  times.  It’s  a  tiny                   
margin  though.  We  still  suffer  loss  of  significance  due  to  coefficients  with  alternating  signs.  All                 
we’ve  done  is  make  the  error  smaller  by  making  the  term  itself  smaller,  by  adding  it  to  a  linear                     
approximation  which  itself  incurs  no  precision  loss.  Even  under  ideal  circumstances,  rounding              
operations  introduce  errors  of  0.5  ULP.  The  above  graph  slightly  exceeds  2.5  ULP-32  even  with                 
Desmos’   very  high  precision  arithmetic ,  meaning  we  can’t  achieve  less  than  3  ULP  using  this                 
polynomial.  FMA  operations,  weight  adjustments,  and  symmetrical  evaluation  all  help  a  bit,  but              
can’t   give   us   an   implementation   which   satisfies   Vulkan’s   requirements.   Bummer.   

Fortunately  this  algorithm  behaves  well  when  increasing  the  degree  of  the  polynomial,  and  for                
D =7   we   get:   

https://www.desmos.com/calculator/tdqdodlufj
https://engineering.desmos.com/articles/intuitive-calculator-arithmetic/


//   lolremez   --float   -d   7   -r   "0:1"   "(log2(x+1)-x)/x"   "1/x"   
float   P(float   x)   
{   
     float   u   =   -9.3091638e-3f;   
     u   =   u   *   x   +   5.2059003e-2f;   
     u   =   u   *   x   +   -1.3752135e-1f;   
     u   =   u   *   x   +   2.4186478e-1f;   
     u   =   u   *   x   +   -3.4730109e-1f;   
     u   =   u   *   x   +   4.786837e-1f;   
     u   =   u   *   x   +   -7.2116581e-1f;   
     return   u   *   x   +   4.4268988e-1f;   
}   
  

float   log2(float   x)   
{   
     int   im   =   bit_cast<int>(x);   
     float   y   =   (float)(im   -   (127   <<   23))   *   (1.0f   /   (1   <<   23));   
  

     float   m   =   (float)(im   &   0x007FFFFF)   *   (1.0f   /   (1   <<   23));   
  

     return   P(m)   *   m   +   y;   
}   

This   achieves   1.70   ULP.   Success!   Weight   tuning   and   FMA   operations   can   lower   it   a   bit   further.   

The   Vanishingly   Small   and   Unfathomably   Large   
Note  that  when  we  extract  the  mantissa   m ,  we  immediately  divide  it  by   to  normalize  it  to  the               223       

 range.  While  this  can  be  done  cheaply  by  multiplying  by  the  reciprocal,  and  this  doesn’t  0, )[ 1                 
lose   any   precision,   we   might   consider   getting   rid   of   it   by   “absorbing”   it   into    P(x) .   

Unfortunately  for  the  high  precision  log2()  this  produces  a  polynomial  with  coefficients  so  small                
they  round  to  zero  (it  turns  out   LolRemez   will  happily  print  numbers  that  can’t  be  represented  in                   
binary32 ,  even  when  using  the   --float  argument).  It’s  fine  for  a  relaxed  precision  version                
though:   

     //   lolremez   --float   -d   2   -r   "0:2^23"   "(log2(x/2^23+1)-x/2^23)/x"   "1/x"   
float   f(float   x)   
{   
     float   u   =   2.8017103e-22f;   
     u   =   u   *   x   +   -8.373131e-15f;   



     return   u   *   x   +   5.0615534e-8f;   
}   
  

float   log2_relaxed(float   x)   
{   
     int   im   =   bit_cast<int>(x);   
     float   y   =   fma((float)im,   (1.0f   /   (1   <<   23)),   -127.0f);   
  

     float   m   =   (float)(im   &   0x007FFFFF);   
  

     return   fma(P(m),   m,   y);   
}   

Note   that   it   also   is   able   to   use    fma()    for   the   piecewise   linear   approximation   again.   

One  last  thing  we  need  to  take  care  of  is  the  handling  of  infinity.   is  obviously  infinity,  but                og (∞)  l 2      
our  current  implementation  returns  128.0,  the  unbiased  exponent  of  the  representation  of              
infinity.  We  could  check  for  128.0  and  replace  it  with  infinity,  but  this  is  not  actually  correct                   
because   y  becomes  128.0  before   x  becomes  infinity,  due  to  rounding.  This  also  happens  when                 
using  the  high-precision  version  which  uses  the  integer  subtraction,  because  integer  values              
greater  than   1  <<  23  don’t  fit  in  the  mantissa  (note  that  this  loss  of  significance  isn’t  otherwise                      
a  problem  due  to  3  ULP  being  a  larger  absolute  tolerance  for  larger  ).  We  can  instead               og (x)l 2     
deal   with   infinity   like   this:   

float   log2(float   x)   
{   
     int   im   =   bit_cast<int>(x);   
     float   y   =   (float)(im   -   (127   <<   23))   *   (1.0f   /   (1   <<   23));   
     if(im   ==   0x7F800000)   y   =   INFINITY;   
  

     float   m   =   (float)(im   &   0x007FFFFF)   *   (1.0f   /   (1   <<   23));   
  

     return   P(m)   *   m   +   y;   
}   

Results   
All  of  the  above  code  easily  translates  into  SIMD-friendly  implementations.  Compared  to              
SwiftShader’s  legacy  implementation  of   exp2() ,  I’ve  fixed  overflow/underflow  handling,  and            
I’ve  improved  its  accuracy  from  3.37  ULP  (not  conformant!)  to  2.62  (2.30  with  FMA),  while                 
reducing  instruction  count.  Compared  to  the  previously  used  reference  implementation  it  is  22×               
faster.   The   relaxed   precision   implementation   is   an   additional   1.5×   faster.   



The  new   log2()  implementation  is  1.5×  faster  than  the  legacy  implementation,  and  28×  faster                
than  the  reference  implementation.  The  relaxed  precision  implementation  is  an  additional  1.8×              
faster.   


