
Optimizing Exp/Log
For SwiftShader

Nicolas Capens <capn@google.com>

Introduction
SwiftShader is a conformant implementation of the Vulkan graphics API which runs entirely on
the CPU. We’ve identified transcendental functions, and in particular the exponential and
logarithm, to require optimization.

Objective
Vulkan specifies that the single-precision (32-bit) result of the exp(x) and exp2(x) shader
operations must have an accuracy of ULP (note that Vulkan uses precision and × 3 + 2 x| |
accuracy interchangeably). log(x) and log2(x) have similar tolerances.

The new implementations will also have to be vectorizable to take advantage of wide SIMD .

ULP: Discontinuous Relative Error Measure
Before we dive into any implementation details, we need to fully understand the requirements.
Vulkan defines the error tolerance for exp2 and log2 in terms of ULP, or Units in the Last
Place . 1 ULP is essentially the smallest representable difference in floating-point values. Note
that this is relative to the value we’re comparing against. Hence it is not a constant, but a
function. It is convenient for a specification to drop the function parameter and just imply it. That
said, I’ll use ULP when talking about the error at a given point or the maximum error over an
interval, and use to denote the function. The image below, produced using the excellent lp(x)u
Desmos graphing calculator , illustrates for a single-precision (32-bit) value: lp(x)u

https://www.vulkan.org/
https://issuetracker.google.com/169754022
https://www.khronos.org/registry/vulkan/specs/1.2/html/vkspec.html#spirvenv-precision-operation
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://docs.google.com/document/d/1GGJxTkz3rPRNWkrLOFuT-8HtH-wFJ_or24f6CjBDKMs/edit#bookmark=id.e50jhgbl2jpa
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://en.wikipedia.org/wiki/Unit_in_the_last_place
https://www.desmos.com/calculator

It is discontinuous due to the last manissa bit having a 2× difference in numerical value between
every consecutive exponent value. Note that it is a fractal; zooming closer to 0 gives us ever
smaller line segments 2× shorter but also 2× lower in y-axis value. That said, we can observe
that is roughly linear in . Therefore by first approximation it can be considered a lp(x)u x
measure of the relative error.

Since the ULP is relative to the result of a function, we have to use that function as the input to
the function. For example for we get : lp(x)u xp (x)e 2 lp(exp (x))u 2

Note how for in , 1 ULP is a constant . In other words, an absolute error! However, x 0, 1)[2 ­23
Vulkan tolerates an error of , and when we take that into account we get our final error × 3 + 2 x| |
bounds:

Globally this still curves like , but locally these are sloped linear segments. 2x

Finally, note that ULP is also a function of the precision of the floating-point format we’re using
(or comparing it against). A single-precision float has 23 mantissa bits, while a 64-bit double
has 53 mantissa bits. Then there’s also 16-bit half-precision, which typically has 10 mantissa
bits. Note that one can store a half-precision value in a 32-bit float, or evaluate the ULP error of
a 32-bit value more precisely by comparing it against a value computed in 64-bit. Where useful,
I’ll discern between these precisions as ULP-32 and ULP-16.

Exp2 Range Reduction
The mathematical identity lends itself for computing the of xp (x) xp (x) xp (x) e b 1 + x2 = e b 1 · e b 2 xpe 2
the integer and the fractional part of the argument separately. That is,

, where and . The of the integer is xp (x) xp (x) xp (x) e 2 i + xf = e 2 i · e b f loor(x)xi = f xf = x ­ xi xpe 2 xi
trivial to compute: just put it in the exponent field of the binary representation of a floating-point
value (adjusted for the bias), with mantissa 0.

The IEEE 754 binary representation of a single-precision floating-point number consists of a
sign bit, an 8-bit exponent field, and a 23-bit mantissa field:

(By Vectorization: Stannered - Own work based on: Float example.PNG, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3357169)

So the C++ code to compute the exponential of the integer part becomes:

i = (int)floor(x);
exp2i = bit_cast<float>((i + 127) << 23);

https://commons.wikimedia.org/w/index.php?curid=3357169

Computing the of the fractional part of the argument means we only have to deal with xpe 2
values in the interval. In other words, we need to find an approximation for the segment 0, 1)[
shown below, and make sure the error stays below the corresponding segment in the graph
above.

We could resort to using a polynomial which satisfies several arbitrarily chosen conditions, like
I’ve done for the implementation of sine and cosine . Unfortunately, for simple conditions like
matching at equidistant points, such an algebraic solution requires a fairly high degree xp (x)e 2
for the polynomial to have an error of only a few ULP.

Instead we’re better off using an algorithmic solution for the polynomial which best fits this
curve. The Remez algorithm computes such a “minimax” polynomial. We’ll be using the
LolRemez program. It’s a great open-source implementation of the Remez algorithm with useful
features and a simple command-line interface.

We need a 5th degree polynomial to satisfy Vulkan’s accuracy requirement:

$./lolremez --float -d 5 -r "0:1" "2^x"
// Approximation of f(x) = 2^x
// on interval [0, 1]
// with a polynomial of degree 5.
// p(x)=((((1.8964611e-3*x+8.942829e-3)*x+5.5866246e-2)*x+

https://github.com/google/swiftshader/blob/master/docs/Sin-Cos-Optimization.pdf
https://en.wikipedia.org/wiki/Remez_algorithm
http://lolremez/

// 2.4013971e-1)*x+6.9315475e-1)*x+9.9999989e-1
float f(float x)
{
 float u = 1.8964611e-3f;
 u = u * x + 8.942829e-3f;
 u = u * x + 5.5866246e-2f;
 u = u * x + 2.4013971e-1f;
 u = u * x + 6.9315475e-1f;
 return u * x + 9.9999989e-1f;
}

Plotting the error, we get:

At first look, it may appear the maximum error is just 1.0 ULP!

In reality, it’s actually 2.56 ULP when using binary32 floating-point arithmetic. This is caused by
rounding errors introduced in the polynomial’s multiplications, and loss of significance in the
additions. When we look at the error relative to Vulkan’s tolerance, which I’ll call the ‘margin’, it
peaks at 0.855. Quite a bit worse than what we’d expect from looking at the above pretty graph,
but still, any worst case margin value below 1.0 is within Vulkan’s requirements. Further
improvements on this are just a bonus.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format#IEEE_754_single-precision_binary_floating-point_format:_binary32
https://en.wikipedia.org/wiki/Loss_of_significance

Integer Exactness
One issue with the above solution is that does not equal 1.0 as expected. Nor do any xp (0)e 2
other integer input values result in exact powers of 2. While Vulkan doesn’t spell this out as a
requirement, applications expect it, and it appears to be standard across GPU implementations.

The problem with the current polynomial is that the constant coefficient added at the end is not
1.0 but slightly less. We’d really like a polynomial of the form , where is a (x) f · x + 1 (x)f
different Remez-optimized polynomial. Since we want to approximate , we get: (x) f · x + 1 2x

 (x) f · x + 1 ≈ 2x

 (x) 2) x f ≈ (x ­ 1 /

In other words, we ask the Remez algorithm to approximate in the interval . 2) x (x ­ 1 / 0,][1
Since we’re already multiplying by , let’s see if we can have our cake and eat it by trying (x)f x
to make the new a 4th degree polynomial: (x)f

$./lolremez --float -d 4 -r "0:1" "(2^x - 1) / x"
// Approximation of f(x) = (2^x - 1) / x
// on interval [0, 1]
// with a polynomial of degree 4.
// p(x)=(((1.7909619e-3*x+9.1942073e-3)*x+5.5660287e-2)*x+
// 2.4020655e-1)*x+6.9314759e-1
float f(float x)
{
 float u = 1.7909619e-3f;
 u = u * x + 9.1942073e-3f;
 u = u * x + 5.5660287e-2f;
 u = u * x + 2.4020655e-1f;
 return u * x + 6.9314759e-1f;
}

Note that the formula this f(x) approximates is undefined for , but LolRemez still arrives x = 0
at a solution. Plotting the resulting error:

Looks good enough, right? Unfortunately, no, the margin is exceeded by 1.56.

Interestingly this happens for a very small negative value of . Despite our algorithm now giving x
the exact result for , for small negative values we’re computing . In x = 0 x xp (­) xp (x) e 2 1 · e 2 + 1
other words our polynomial gets evaluated for a value near 1, where its error is the greatest.
Meanwhile, left of the error tolerance is much narrower. It’s ~3 ULP, but half as much in x = 0
absolute value compared to the ULP for small positive x values. While so the xp (­ e 2 1) .5= 0
error is also reduced by a factor of 2, it essentially means we need to keep things below 3 ULP
across the interval of the polynomial; Vulkan’s extra tolerance of an additional ULP × 2 x| |
doesn’t really help us here.

We could try making the error near smaller, or address the asymmetry issue. Or both? x = 1

Watch your Weight
While the basic Remez algorithm always optimizes the polynomial to have the minimum
maximum absolute error, i.e. a constant across the interval it is optimizing for, it’s relatively easy
to “shape” the error envelope by using a weight function .

Note that the LolRemez program considers the weight function to define the allowed relative
tolerance. A larger weight in a certain region means the polynomial will be less accurate there.
Others consider the weight function to define the inverse of that, which might sound more
natural as a “weight”, but is less intuitive when trying to match a given tolerance function. Just
think of LolRemez ’s weight function as “tolerance” and it becomes both intuitive and practical.

https://github.com/samhocevar/lolremez/wiki/Tutorial-2-of-5%3A-switching-to-relative-error
https://arxiv.org/pdf/0803.0439.pdf

So what weight function should we use for our exp2() approximation? As noted earlier, lp(x)u
is actually constant across the interval. And the error graph for the 5th degree polynomial 0,)[1
approximation of clearly stays within a band of ~1.0 ULP. But when we started using 2x

 instead, the error near became 0 but then appears to get larger with increasing (x) f · x + 1 x = 0
x. That’s no coincidence. With optimized for a constant error, the multiplication by (x)f x
“squeezes” the error to become zero at and then linearly grows. To undo that, we need to x = 0
use as the weight function. x 1/

The result looks like this:

$./lolremez --float -d 4 -r "0:1" "(2^x-1)/x" "1/x"
// Approximation of f(x) = (2^x-1)/x
// with weight function g(x) = 1/x
// on interval [0, 1]
// with a polynomial of degree 4.
// p(x)=(((1.8852974e-3*x+8.9733787e-3)*x+5.5835927e-2)*x+
// 2.4015281e-1)*x+6.9315247e-1
float f(float x)
{
 float u = 1.8852974e-3f;
 u = u * x + 8.9733787e-3f;
 u = u * x + 5.5835927e-2f;
 u = u * x + 2.4015281e-1f;
 return u * x + 6.9315247e-1f;
}

Magnificent! In practice the single-precision results are also good: 2.66 ULP and a margin value
of 0.85.

Enjoy that extract-at-integers cake (but keep watching your weight)!

Symmetrical Range Reduction
While we can tweak the weight function a bit to achieve slightly better results, recall that the
asymmetry between small negative values of x and small positive values forced us to practically
ignore the part of Vulkan’s tolerance. Also the numerical losses are greater near x=1 so × 2 x| |
counter to Vulkan’s formula things only improve when making the weight function smaller near
that end. Can we avoid having small negative values of “wrap around” to evaluate the x
polynomial near 1?

Fortunately, yes. The mathematical identity allows to be split xp (x) xp (x) xp (x) e 2 1 + x2 = e 2 1 · e 2 2 x
into any sum of values that add up to . The pair of and was an obvious x loor(x)f loor(x) x ­ f

first choice, but it results in skewing the second term to be in the interval. We can instead 0,)[1
use and , which gives us a interval for the latter. ound(x)r ound(x) x ­ r ­ .5, .5] [0 0

Aside from replacing floor(x) with round(x) , we just have to update our polynomial with the
result LolRemez produces when shifting the interval to : ­ .5, .5] [0 0

$./lolremez --float -d 4 -r "-0.5:0.5" "(2^x-1)/x" "1/x"
// Approximation of f(x) = (2^x-1)/x
// with weight function g(x) = 1/x
// on interval [-0.5, 0.5]
// with a polynomial of degree 4.
// p(x)=(((1.3407259e-3*x+9.6718751e-3)*x+5.5503084e-2)*x+
// 2.4022235e-1)*x+6.9314721e-1
float f(float x)
{
 float u = 1.3407259e-3f;
 u = u * x + 9.6718751e-3f;
 u = u * x + 5.5503084e-2f;
 u = u * x + 2.4022235e-1f;
 return u * x + 6.9314721e-1f;
}

This produces an effective ULP error of 2.80, which is slightly worse than our previous best of
2.66 ULP. However, the ‘margin’ measure improved from 0.85 to 0.73.

But that’s far from the best achievable result. The weight function for the above polynomial was
still , or just a constant 1 when taking the subsequent multiplication by into account. We x 1/ x

could use e.g as the numerator instead, to practically 0.25 rf (1000) .75) 3) (· e · x + 0 · (+ 2 · x| |
match the shape of Vulkan’s tolerance function. This gives us 2.29 ULP and a 0.59 margin.

While that weight function should theoretically produce the best result, practice disagrees once
again. With a bit of trial and error, I found that a weight function of produces an 3 .5) x (+ 3 · x /
even better result: 1.88 ULP, and 0.54 margin.

Watch your Extremities
There’s a subtle problem with computing as . For xp (x)e 2 xp (round(x)) xp (x ound(x)) e 2 · e 2 ­ r
example for , the first term would overflow to infinity, and while the second term 27.7x = 1
evaluates to 0.648, the end result is still infinity. Meanwhile can be xp (127) xp (0.7) e 2 · e 2
computed as a normal binary32 value just fine.

Many applications won’t care about this, but some do. The Vulkan conformance test suite
checks the result for these kinds of input values. Note also that is typically computed as xp(x)e

, and as , which creates several more opportunities for xp (1 ln(2)) e 2 / · x ow(x,)p y xp (y og (x)) e 2 · l 2
overflow or underflow when the result should still be representable.

Note that we could compute the equivalent at no extra xp (round(x)) 2 xp (x ound(x))) e 2 ­ 1 · (· e 2 ­ r
cost and no loss of accuracy, and it avoids intermediate overflow, but it suffers from underflow.
Note that Vulkan does not require support for subnormal floating-point numbers, while many
CPUs do support them, so this can help avoid prematurely returning 0.0 for large negative input
values. Unfortunately computations involving subnormal numbers can incur a performance
penalty, and so it’s desirable to enable the CPU’s flush-to-zero mode.

Alas, this means the round()-based implementation of exp2() is not really suitable for a Vulkan
implementation on the CPU, despite its attractive properties.

In any case, we need to clamp the range of the input argument to ensure we overflow to the
proper representation of infinity (and not NaN), and underflow to 0 (and not a negative number).

Note that a GPU-based implementation typically obtains polynomial coefficients from a table,
and thus optimizes them for different intervals. We could do something similar on the CPU, but
clearly it would be much more costly than simply improving precision through a higher degree
polynomial.

Relaxing with a Halfling
While we’ve reached the limits of improving accuracy without adding more computational cost,
we can reduce the cost by sacrificing accuracy. Fortunately Vulkan and SPIR-V have just the
thing to allow for that: Relaxed Precision . GLSL 4.6 supports expressing relaxed precision
requirements through the mediump qualifier. It essentially reduces the accuracy requirement to
that of the half-precision binary16 format, while still producing 32-bit results. Specifically for

https://en.wikipedia.org/wiki/Subnormal_number
https://en.wikipedia.org/wiki/Subnormal_number#Disabling_subnormal_floats_at_the_code_level
https://en.wikipedia.org/wiki/IEEE_754#Binary
https://en.wikipedia.org/wiki/NaN
https://www.khronos.org/registry/SPIR-V/specs/unified1/SPIRV.html#_relaxed_precision
https://www.khronos.org/registry/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://en.wikipedia.org/wiki/Half-precision_floating-point_format#IEEE_754_half-precision_binary_floating-point_format:_binary16

 the tolerance becomes ULP. Note this is in ULP-16, which is much coarser xp (x)e 2 1 × |x| + 2
than a ULP-32.

Hitting this accuracy requirement is easily feasible with a 3rd degree polynomial (2nd degree
when factoring out x to still get exact results at integer values):

$./lolremez --float -d 2 -r "0:1" "(2^x-1)/x" "1/x"
// Approximation of f(x) = (2^x-1)/x
// with weight function g(x) = 1/x
// on interval [0, 1]
// with a polynomial of degree 2.
// p(x)=(7.8145574e-2*x+2.2617357e-1)*x+6.9555686e-1
float f(float x)
{
 float u = 7.8145574e-2f;
 u = u * x + 2.2617357e-1f;
 return u * x + 6.9555686e-1f;
}

This achieves 0.13 ULP, and could be tuned a bit to trade ULP for an improved ‘margin’ result,
but I kind of like the universality of ULP versus Vulkan’s seemingly arbitrarily sloping tolerance
function.

So we save two multiplies and two additions, or two fused multiply-add (FMA) operations. It’s
significant, but we’re still left with requiring quite a lot of other instructions:

https://en.wikipedia.org/wiki/Multiply%E2%80%93accumulate_operation#Fused_multiply%E2%80%93add

float exp2_relaxed(float x)
{
 x = min(x, 128.0f);
 x = max(x, bit_cast<float>(0xC2FDFFFF)); // -126.999992

 float x0 = floor(x);
 int i = (int)x0;
 float f = x - x0;

 // Add single-precision bias, and shift into exponent.
 float exp2i = bit_cast<float>((i + 127) << 23);

 const float a = 7.8145574e-2f;
 const float b = 2.2617357e-1f;
 const float c = 6.9555686e-1f;
 float exp2f = fma(fma(fma(a, f, b), f, c), f, 1.0f);

 return exp2i * exp2f;
}

Note I’m only using fma() here to illustrate the theoretical cost. The standard C++ function may
incur call overhead and may actually be implemented using double-precision operations.

Looking at the line to compute exp2i , there’s an addition and a shift operation. A shift left is just
a multiplication by a power of 2. So let’s replace these two instructions with a single FMA
operation:

float exp2i = bit_cast<float>((int)fma(x0, 1 << 23, 127 << 23));

Note how this takes a float as input and returns a float, but the input is expected to be a value
without a fractional part. What would happen if it did have a fractional part? The fraction would
get multiplied by , resulting in a value always smaller than , then it gets converted to an 223 223
integer, and ends up in the mantissa field of the result (while the integer part of the input still
ends up in the exponent field, with the bias added). This gets interpreted as , meaning 1) 2i · (+ f
the fractional part causes linear interpolation between the powers of 2. It’s an approximation of

 all in itself! 2x

https://en.cppreference.com/w/cpp/numeric/math/fma

To compute instead, where equals our original , we see that 2i+xf = 2i · 2xf i + xf x 1)(+ f = 2xf

and thus is the new fraction we should be using. This can be achieved either by f = 2xf ­ 1
adding it to , or by adding to . Note that in either of these cases, or can loor(x)f f ­ xf x f f ­ xf
be efficiently computed as a polynomial. The choice appears arbitrary…

float exp2_relaxed(float x)
{
 x = min(x, 128.0f);
 x = max(x, bit_cast<float>(0xC2FDFFFF)); // -126.999992

 float f = x - floor(x);

 // Polynomial which approximates (2^f-f-1)/f.
 const float a = 7.8145574e-2f;
 const float b = 2.2617357e-1f;
 const float c = -3.0444314e-1f;
 float r = fma(fma(a, f, b), f, c);

 // Final multiplication by f, then add to x.
 float y = fma(r, f, x);

 return bit_cast<float>((int)fma(y, 1 << 23, 127 << 23));
}

This code not only eliminates the integer addition and shift, it also avoids an extra multiplication,
as well as loading the 1.0f constant. The accuracy is still the same as the one above.

Gaining Significance
Wait a sec… the same optimization could also be applied to the high accuracy version, right?

Not really. I've previously mentioned FMA operations only in the context of improving
performance. If I replace the fma() calls in the exp2_relaxed() with multiplies and additions,
the achieved accuracy remains the same. But when we use the same algorithm for the high
accuracy version (i.e. using the higher degree polynomial), the ULP-32 error increases to 33.4,
failing to meet Vulkan’s requirement. This result is obtained with both separate multiplies and
additions, and with 32-bit FMA operations, like the one below for x86 CPUs supporting FMA3 .

#include <immintrin.h>

float fma32(float x, float y, float z)
{
 return bit_cast<float>(_mm_extract_ps(_mm_fmadd_ss(
 _mm_set1_ps(x), _mm_set1_ps(y), _mm_set1_ps(z)), 0));
}

Using a higher degree polynomial doesn’t help either. It’s only when the last FMA operation —
the one where we multiply by 1 << 23 for the mantissa shift and add 127 << 23 for the
exponent bias — is replaced using integer addition, that we get a Vulkan conformant
implementation:

// lolremez --float -d 4 -r "0:1" "(2^x-x-1)/x" "1/x"
float P(float x)
{
 float u = 1.8852974e-3f;
 u = u * x + 8.9733787e-3f;
 u = u * x + 5.5835927e-2f;
 u = u * x + 2.4015281e-1f;
 return u * x + -3.0684753e-1f;
}

float exp2(float x)
{
 x = min(x, 128.0f);
 x = max(x, bit_cast<float>(0xC2FDFFFF)); // -126.999992

https://en.wikipedia.org/wiki/FMA_instruction_set#FMA3_instruction_set

 float f = x - floor(x);
 float y = P(f) * f + x;

 return bit_cast<float>((int)(y * (1 << 23)) + (127 << 23));
}

This achieves an excellent accuracy of 2.15 ULP (2.06 when using fma32()). The reason
behind this gain —the last fully conformant result was 2.66 ULP— is that instead of doing a
multiplication by a polynomial approximation for a function which ranges between 1.0 and 2.0,
we’re adding an approximation for a function which ranges between 0.0 and -0.0861. The
former is inevitably only accurate to since only the mantissa value changes in this range, 2­23
and this results in a 0.5 ULP rounding error.

Note that it also matters a lot now that we’re computing and adding it to , instead of 2f ­ f ­ 1 x
computing and adding it to . 2f ­ 1 loor(x)f

In terms of performance, we’ve only really eliminated a shift operation and loading one fewer
constants. Note that the multiplication by 1 << 23 is still done in floating-point because 32-bit
integer SIMD multiplication may get split into multiple µops.

Logarithm = Exponential -1

For computing , let’s first take a look at Vulkan’s precision requirements: “3 ULP outside og (x)l 2
the range [0.5,2.0]. Absolute error < 2 -21 inside the range [0.5,2.0].” Plotting this gives the
following result:

The blue segments are the ULP error, while the red segments are the absolute error. Note that
the ULP error tolerance approaches zero near , but it’s overridden by the larger absolute x = 1
error tolerance. And specifically in the interval the tolerance is 3 ULP, which translates to 2,)[4
an absolute error of . 3 · 223

 is the inverse of , meaning that . This also shows in their og (x)l 2 xp (x)e 2 og (exp (x))l 2 2 = x
fundamental identity for range reduction; above we relied on , xp (x) xp (x) xp (x) e 2 1 + x2 = e 2 1 · e 2 2
while with logarithms the roles of addition and multiplication are reversed;

. og (x) og (x) og (x) l 2 1 · x2 = l 2 1 + l 2 2

An efficient implementation can be based on which og (2 1)) og (2) og (1) l 2
e · (+ m = l 2

e + l 2 + m
simplifies to , where is the (unbiased) exponent and is the mantissa of the og (1)e + l 2 + m e m
input argument. Note again the similarity with : instead of inserting the exponent into the xp (x)e 2
result, for we extract the exponent from the input. og (x)l 2

This “extracting” of the exponent can be done by interpreting the input argument as an integer,
subtracting 127 << 23 , casting it to floating-point, and multiplying by 1.0f / (2 << 23) .
Sound familiar? It’s exactly the inverse steps of the last line of the exp2() implementation
above. And unless we call floor() on this result to retain just the exponent value, we have a
piecewise linear approximation of that is exact at powers of 2: og (x)l 2

The next step is inverting y = P(f) * f + x. Note that f is the fraction of x , and for x in the
interval we can also write y = P(x) * x + x . This formula is now an ordinary 5th 0,)[1
degree polynomial. Unfortunately, solving that for x is the equivalent of finding the roots, and
this is not generally solvable , let alone produce a reasonably low-degree polynomial.

Let’s take a step back here. P(f) * f was an approximation of , so the exact 2f ­ f ­ 1
formula is . Solving that for we get . Remember, this is only correct xp (x) y = e 2 ­ 1 x og (y)l 2 + 1
for the output in the range , which corresponds to the input in the interval . x 0,)[1 y 1,)[2
Recall that is the result of the piecewise linear approximation, so our actual input interval for y
which this algorithm is correct is . To be exact at powers of 2, namely and thus 2,)[4 x = 2 y = 1
, we’re looking for an approximation of the form . In other words (y) y) P · (­ 1 + 1

. (y) og (y) (y) P ≈ l 2 / ­ 1

Entering this into LolRemez , for various polynomial degrees D , we get the following results:

https://en.wikipedia.org/wiki/Quintic_function#Finding_roots_of_a_quintic_equation

$./lolremez --float -d D -r "2:4" "log2(x)/(x-1)" "1/(x-1)"

Yikes! For a polynomial of 4th degree sufficed (5 when including the final multiplication) xp (x)e 2
to get below 3 ULP-32, but for we never get to single-digit ULP errors, not even with og (x)l 2
FMA operations. Fortunately things look fine for relaxed precision, as an ULP-16 below 1 is
achieved with D =2, just like for . xp (x)e 2

Second Try
Part of the problem for the high-precision version is that logarithmic functions are fundamentally
not that easy to approximate with ordinary polynomials. In fact a Taylor series centered at x = 1
never converges past . It’s not hard to see that more closely resembles the square x = 2 og (x)l 2
root () or reciprocal function (), so a polynomial with increasing integer powers isn't great x0.5 x­1
at approximating it, even in a limited interval. A second important observation is that the signs of
the coefficients of the polynomial approximation alternate, which creates subtractions which
cause large losses of significance. For example for degree 5:

$./lolremez --float -d 5 -r "1:2" "log2(x)/(x-1)" "1/(x-1)"
// Approximation of f(x) = log2(x)/(x-1)
// with weight function g(x) = 1/(x-1)
// on interval [1, 2]
// with a polynomial of degree 5.
// p(x)=((((-2.645745e-2*x+2.5573874e-1)*x-1.0379186)*x+
// 2.3021687)*x-3.0995312)*x+3.048553
float f(float x)
{
 float u = -2.645745e-2f;
 u = u * x + 2.5573874e-1f;

 ULP-32 over [2,4) with FMA ULP-16

D =1 6.47766

D =2 0.78980

D =3 862.56 0.10535

D =4 124.86 0.015259

D =5 25.176 22.872 0.0030518

D =6 26.249 21.116 0.0031738

D =7 54.680 40.117

https://en.wikipedia.org/wiki/Taylor_series#Natural_logarithm
https://en.wikipedia.org/wiki/Logarithm#Calculation

 u = u * x + -1.0379186f;
 u = u * x + 2.3021687f;
 u = u * x + -3.0995312f;
 return u * x + 3.048553f;
}

This function ranges between 1.436 and 1.0, meaning that only 22 of the mantissa bits play a
role, out of the entire 32-bit format. Meanwhile for the computation of we used a xp (x)e 2
“correction” term which ranges between 0.0 and 0.086, which uses a much larger portion of the
binary32 ’s representable range.

Can we do something similar for ? Here’s the difference between the linear og (x)l 2
approximation and the actual logarithm:

The black graph shows “hops” which are the same shape between each power of 2. This
corresponds with the normalized mantissa varying between 0.0 and 1.0. Moreover, this graph
only ranges between 0.0 and 0.086, just like ’s correction term. xp (x)e 2

It corresponds to , where is the mantissa. Once again to get exactness at og (m) l 2 + 1 ­ m m
powers of 2, we separate out a final multiplication and adjust the weight accordingly, and we
get:

// lolremez --float -d 6 -r "0:1" "(log2(x+1)-x)/x" "1/x"
float P(float x)
{

float u = 1.5529917e-2f;
u = u * x + -7.9557731e-2f;
u = u * x + 1.9429432e-1f;
u = u * x + -3.2590197e-1f;

u = u * x + 4.7355341e-1f;
u = u * x + -7.2058547e-1f;
return u * x + 4.4266783e-1f;

}

float log2(float x)
{
 int im = bit_cast<int>(x);
 float y = (float)(im - (127 << 23)) * (1.0f / (1 << 23));

 float m = (float)(im & 0x007FFFFF) * (1.0f / (1 << 23));

 return P(m) * m + y;
}

This gives us an effective ULP error of 3.71 in the interval. Much better! But still not below 2,)[4
3, despite already using a 2 degrees higher polynomial than . Let’s plot the error to see xp (x)e 2
what’s going on:

That’s odd… the (blue) error graph stays within the tolerance bounds at all times. It’s a tiny
margin though. We still suffer loss of significance due to coefficients with alternating signs. All
we’ve done is make the error smaller by making the term itself smaller, by adding it to a linear
approximation which itself incurs no precision loss. Even under ideal circumstances, rounding
operations introduce errors of 0.5 ULP. The above graph slightly exceeds 2.5 ULP-32 even with
Desmos’ very high precision arithmetic , meaning we can’t achieve less than 3 ULP using this
polynomial. FMA operations, weight adjustments, and symmetrical evaluation all help a bit, but
can’t give us an implementation which satisfies Vulkan’s requirements. Bummer.

Fortunately this algorithm behaves well when increasing the degree of the polynomial, and for
D =7 we get:

https://www.desmos.com/calculator/tdqdodlufj
https://engineering.desmos.com/articles/intuitive-calculator-arithmetic/

// lolremez --float -d 7 -r "0:1" "(log2(x+1)-x)/x" "1/x"
float P(float x)
{
 float u = -9.3091638e-3f;
 u = u * x + 5.2059003e-2f;
 u = u * x + -1.3752135e-1f;
 u = u * x + 2.4186478e-1f;
 u = u * x + -3.4730109e-1f;
 u = u * x + 4.786837e-1f;
 u = u * x + -7.2116581e-1f;
 return u * x + 4.4268988e-1f;
}

float log2(float x)
{
 int im = bit_cast<int>(x);
 float y = (float)(im - (127 << 23)) * (1.0f / (1 << 23));

 float m = (float)(im & 0x007FFFFF) * (1.0f / (1 << 23));

 return P(m) * m + y;
}

This achieves 1.70 ULP. Success! Weight tuning and FMA operations can lower it a bit further.

The Vanishingly Small and Unfathomably Large
Note that when we extract the mantissa m , we immediately divide it by to normalize it to the 223

 range. While this can be done cheaply by multiplying by the reciprocal, and this doesn’t 0,)[1
lose any precision, we might consider getting rid of it by “absorbing” it into P(x) .

Unfortunately for the high precision log2() this produces a polynomial with coefficients so small
they round to zero (it turns out LolRemez will happily print numbers that can’t be represented in
binary32 , even when using the --float argument). It’s fine for a relaxed precision version
though:

 // lolremez --float -d 2 -r "0:2^23" "(log2(x/2^23+1)-x/2^23)/x" "1/x"
float f(float x)
{
 float u = 2.8017103e-22f;
 u = u * x + -8.373131e-15f;

 return u * x + 5.0615534e-8f;
}

float log2_relaxed(float x)
{
 int im = bit_cast<int>(x);
 float y = fma((float)im, (1.0f / (1 << 23)), -127.0f);

 float m = (float)(im & 0x007FFFFF);

 return fma(P(m), m, y);
}

Note that it also is able to use fma() for the piecewise linear approximation again.

One last thing we need to take care of is the handling of infinity. is obviously infinity, but og (∞) l 2
our current implementation returns 128.0, the unbiased exponent of the representation of
infinity. We could check for 128.0 and replace it with infinity, but this is not actually correct
because y becomes 128.0 before x becomes infinity, due to rounding. This also happens when
using the high-precision version which uses the integer subtraction, because integer values
greater than 1 << 23 don’t fit in the mantissa (note that this loss of significance isn’t otherwise
a problem due to 3 ULP being a larger absolute tolerance for larger). We can instead og (x)l 2
deal with infinity like this:

float log2(float x)
{
 int im = bit_cast<int>(x);
 float y = (float)(im - (127 << 23)) * (1.0f / (1 << 23));
 if(im == 0x7F800000) y = INFINITY;

 float m = (float)(im & 0x007FFFFF) * (1.0f / (1 << 23));

 return P(m) * m + y;
}

Results
All of the above code easily translates into SIMD-friendly implementations. Compared to
SwiftShader’s legacy implementation of exp2() , I’ve fixed overflow/underflow handling, and
I’ve improved its accuracy from 3.37 ULP (not conformant!) to 2.62 (2.30 with FMA), while
reducing instruction count. Compared to the previously used reference implementation it is 22×
faster. The relaxed precision implementation is an additional 1.5× faster.

The new log2() implementation is 1.5× faster than the legacy implementation, and 28× faster
than the reference implementation. The relaxed precision implementation is an additional 1.8×
faster.

