# Owner(s): ["module: dynamo"]

import functools
import queue
import threading
from unittest import skipIf as skipif, SkipTest

import pytest
from pytest import raises as assert_raises

from torch.testing._internal.common_utils import (
    instantiate_parametrized_tests,
    parametrize,
    run_tests,
    TEST_WITH_TORCHDYNAMO,
    TestCase,
)


if TEST_WITH_TORCHDYNAMO:
    import numpy as np
    from numpy.random import random
    from numpy.testing import assert_allclose  # , IS_WASM
else:
    import torch._numpy as np
    from torch._numpy.random import random
    from torch._numpy.testing import assert_allclose  # , IS_WASM


skip = functools.partial(skipif, True)


IS_WASM = False


def fft1(x):
    L = len(x)
    phase = -2j * np.pi * (np.arange(L) / L)
    phase = np.arange(L).reshape(-1, 1) * phase
    return np.sum(x * np.exp(phase), axis=1)


class TestFFTShift(TestCase):
    def test_fft_n(self):
        assert_raises((ValueError, RuntimeError), np.fft.fft, [1, 2, 3], 0)


@instantiate_parametrized_tests
class TestFFT1D(TestCase):
    def setUp(self):
        super().setUp()
        np.random.seed(123456)

    def test_identity(self):
        maxlen = 512
        x = random(maxlen) + 1j * random(maxlen)
        xr = random(maxlen)
        for i in range(1, maxlen):
            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i], atol=1e-12)
            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]), i), xr[0:i], atol=1e-12)

    def test_fft(self):
        np.random.seed(1234)
        x = random(30) + 1j * random(30)
        assert_allclose(fft1(x), np.fft.fft(x), atol=3e-5)
        assert_allclose(fft1(x), np.fft.fft(x, norm="backward"), atol=3e-5)
        assert_allclose(fft1(x) / np.sqrt(30), np.fft.fft(x, norm="ortho"), atol=5e-6)
        assert_allclose(fft1(x) / 30.0, np.fft.fft(x, norm="forward"), atol=5e-6)

    @parametrize("norm", (None, "backward", "ortho", "forward"))
    def test_ifft(self, norm):
        x = random(30) + 1j * random(30)
        assert_allclose(x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm), atol=1e-6)

        # Ensure we get the correct error message
        # NB: Exact wording differs slightly under Dynamo and in eager.
        with pytest.raises((ValueError, RuntimeError), match="Invalid number of"):
            np.fft.ifft([], norm=norm)

    def test_fft2(self):
        x = random((30, 20)) + 1j * random((30, 20))
        assert_allclose(
            np.fft.fft(np.fft.fft(x, axis=1), axis=0), np.fft.fft2(x), atol=1e-6
        )
        assert_allclose(np.fft.fft2(x), np.fft.fft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.fft2(x) / np.sqrt(30 * 20), np.fft.fft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.fft2(x) / (30.0 * 20.0), np.fft.fft2(x, norm="forward"), atol=1e-6
        )

    def test_ifft2(self):
        x = random((30, 20)) + 1j * random((30, 20))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(x, axis=1), axis=0), np.fft.ifft2(x), atol=1e-6
        )
        assert_allclose(np.fft.ifft2(x), np.fft.ifft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.ifft2(x) * np.sqrt(30 * 20), np.fft.ifft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.ifft2(x) * (30.0 * 20.0), np.fft.ifft2(x, norm="forward"), atol=1e-6
        )

    def test_fftn(self):
        x = random((30, 20, 10)) + 1j * random((30, 20, 10))
        assert_allclose(
            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
            np.fft.fftn(x),
            atol=1e-6,
        )
        assert_allclose(np.fft.fftn(x), np.fft.fftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
            np.fft.fftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.fftn(x) / (30.0 * 20.0 * 10.0),
            np.fft.fftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_ifftn(self):
        x = random((30, 20, 10)) + 1j * random((30, 20, 10))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
            np.fft.ifftn(x),
            atol=1e-6,
        )
        assert_allclose(np.fft.ifftn(x), np.fft.ifftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
            np.fft.ifftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.ifftn(x) * (30.0 * 20.0 * 10.0),
            np.fft.ifftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_rfft(self):
        x = random(30)
        for n in [x.size, 2 * x.size]:
            for norm in [None, "backward", "ortho", "forward"]:
                assert_allclose(
                    np.fft.fft(x, n=n, norm=norm)[: (n // 2 + 1)],
                    np.fft.rfft(x, n=n, norm=norm),
                    atol=1e-6,
                )
            assert_allclose(
                np.fft.rfft(x, n=n), np.fft.rfft(x, n=n, norm="backward"), atol=1e-6
            )
            assert_allclose(
                np.fft.rfft(x, n=n) / np.sqrt(n),
                np.fft.rfft(x, n=n, norm="ortho"),
                atol=1e-6,
            )
            assert_allclose(
                np.fft.rfft(x, n=n) / n, np.fft.rfft(x, n=n, norm="forward"), atol=1e-6
            )

    def test_irfft(self):
        x = random(30)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="backward"), norm="backward"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_rfft2(self):
        x = random((30, 20))
        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
        assert_allclose(np.fft.rfft2(x), np.fft.rfft2(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.rfft2(x) / np.sqrt(30 * 20), np.fft.rfft2(x, norm="ortho"), atol=1e-6
        )
        assert_allclose(
            np.fft.rfft2(x) / (30.0 * 20.0), np.fft.rfft2(x, norm="forward"), atol=1e-6
        )

    def test_irfft2(self):
        x = random((30, 20))
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
        assert_allclose(
            x,
            np.fft.irfft2(np.fft.rfft2(x, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfft2(np.fft.rfft2(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_rfftn(self):
        x = random((30, 20, 10))
        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
        assert_allclose(np.fft.rfftn(x), np.fft.rfftn(x, norm="backward"), atol=1e-6)
        assert_allclose(
            np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
            np.fft.rfftn(x, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.rfftn(x) / (30.0 * 20.0 * 10.0),
            np.fft.rfftn(x, norm="forward"),
            atol=1e-6,
        )

    def test_irfftn(self):
        x = random((30, 20, 10))
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
        assert_allclose(
            x,
            np.fft.irfftn(np.fft.rfftn(x, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6
        )
        assert_allclose(
            x, np.fft.irfftn(np.fft.rfftn(x, norm="forward"), norm="forward"), atol=1e-6
        )

    def test_hfft(self):
        x = random(14) + 1j * random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, np.flip(x).conj()))
        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
        assert_allclose(
            np.fft.hfft(x_herm), np.fft.hfft(x_herm, norm="backward"), atol=1e-6
        )
        assert_allclose(
            np.fft.hfft(x_herm) / np.sqrt(30),
            np.fft.hfft(x_herm, norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            np.fft.hfft(x_herm) / 30.0, np.fft.hfft(x_herm, norm="forward"), atol=1e-6
        )

    def test_ihfft(self):
        x = random(14) + 1j * random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, np.flip(x).conj()))
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="backward"), norm="backward"),
            atol=1e-6,
        )
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"), norm="ortho"),
            atol=1e-6,
        )
        assert_allclose(
            x_herm,
            np.fft.ihfft(np.fft.hfft(x_herm, norm="forward"), norm="forward"),
            atol=1e-6,
        )

    @parametrize("op", [np.fft.fftn, np.fft.ifftn, np.fft.rfftn, np.fft.irfftn])
    def test_axes(self, op):
        x = random((30, 20, 10))
        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
        for a in axes:
            op_tr = op(np.transpose(x, a))
            tr_op = np.transpose(op(x, axes=a), a)
            assert_allclose(op_tr, tr_op, atol=1e-6)

    def test_all_1d_norm_preserving(self):
        # verify that round-trip transforms are norm-preserving
        x = random(30)
        x_norm = np.linalg.norm(x)
        n = x.size * 2
        func_pairs = [
            (np.fft.fft, np.fft.ifft),
            (np.fft.rfft, np.fft.irfft),
            # hfft: order so the first function takes x.size samples
            #       (necessary for comparison to x_norm above)
            (np.fft.ihfft, np.fft.hfft),
        ]
        for forw, back in func_pairs:
            for n in [x.size, 2 * x.size]:
                for norm in [None, "backward", "ortho", "forward"]:
                    tmp = forw(x, n=n, norm=norm)
                    tmp = back(tmp, n=n, norm=norm)
                    assert_allclose(x_norm, np.linalg.norm(tmp), atol=1e-6)

    @parametrize("dtype", [np.half, np.single, np.double])
    def test_dtypes(self, dtype):
        # make sure that all input precisions are accepted and internally
        # converted to 64bit
        x = random(30).astype(dtype)
        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)

    @parametrize("dtype", [np.float32, np.float64, np.complex64, np.complex128])
    @parametrize("order", ["F", "non-contiguous"])
    @parametrize(
        "fft",
        [np.fft.fft, np.fft.fft2, np.fft.fftn, np.fft.ifft, np.fft.ifft2, np.fft.ifftn],
    )
    def test_fft_with_order(self, dtype, order, fft):
        # Check that FFT/IFFT produces identical results for C, Fortran and
        # non contiguous arrays
        #   rng = np.random.RandomState(42)
        rng = np.random
        X = rng.rand(8, 7, 13).astype(dtype)  # , copy=False)
        # See discussion in pull/14178
        _tol = float(8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps)
        if order == "F":
            raise SkipTest("Fortran order arrays")
            Y = np.asfortranarray(X)
        else:
            # Make a non contiguous array
            Z = np.empty((16, 7, 13), dtype=X.dtype)
            Z[::2] = X
            Y = Z[::2]
            X = Y.copy()

        if fft.__name__.endswith("fft"):
            for axis in range(3):
                X_res = fft(X, axis=axis)
                Y_res = fft(Y, axis=axis)
                assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
        elif fft.__name__.endswith(("fft2", "fftn")):
            axes = [(0, 1), (1, 2), (0, 2)]
            if fft.__name__.endswith("fftn"):
                axes.extend([(0,), (1,), (2,), None])
            for ax in axes:
                X_res = fft(X, axes=ax)
                Y_res = fft(Y, axes=ax)
                assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
        else:
            raise ValueError


@skipif(IS_WASM, reason="Cannot start thread")
class TestFFTThreadSafe(TestCase):
    threads = 16
    input_shape = (800, 200)

    def _test_mtsame(self, func, *args):
        def worker(args, q):
            q.put(func(*args))

        q = queue.Queue()
        expected = func(*args)

        # Spin off a bunch of threads to call the same function simultaneously
        t = [
            threading.Thread(target=worker, args=(args, q)) for i in range(self.threads)
        ]
        [x.start() for x in t]

        [x.join() for x in t]
        # Make sure all threads returned the correct value
        for i in range(self.threads):
            # under torch.dynamo `assert_array_equal` fails with relative errors of
            # about 1.5e-14. Hence replace it with `assert_allclose(..., rtol=2e-14)`
            assert_allclose(
                q.get(timeout=5),
                expected,
                atol=2e-14
                # msg="Function returned wrong value in multithreaded context",
            )

    def test_fft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.fft, a)

    def test_ifft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.ifft, a)

    def test_rfft(self):
        a = np.ones(self.input_shape)
        self._test_mtsame(np.fft.rfft, a)

    def test_irfft(self):
        a = np.ones(self.input_shape) * 1 + 0j
        self._test_mtsame(np.fft.irfft, a)


if __name__ == "__main__":
    run_tests()
