#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

"""
Runs CIFAR10 training with differential privacy.
"""

import argparse
import logging
import shutil
import sys
from datetime import datetime, timedelta

import numpy as np
import torchvision.transforms as transforms
from torchvision import models
from torchvision.datasets import CIFAR10
from tqdm import tqdm

import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
from torch.func import functional_call, grad_and_value, vmap


logging.basicConfig(
    format="%(asctime)s:%(levelname)s:%(message)s",
    datefmt="%m/%d/%Y %H:%M:%S",
    stream=sys.stdout,
)
logger = logging.getLogger("ddp")
logger.setLevel(level=logging.INFO)


def save_checkpoint(state, is_best, filename="checkpoint.tar"):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, "model_best.pth.tar")


def accuracy(preds, labels):
    return (preds == labels).mean()


def compute_norms(sample_grads):
    batch_size = sample_grads[0].shape[0]
    norms = [
        sample_grad.view(batch_size, -1).norm(2, dim=-1) for sample_grad in sample_grads
    ]
    norms = torch.stack(norms, dim=0).norm(2, dim=0)
    return norms, batch_size


def clip_and_accumulate_and_add_noise(
    model, max_per_sample_grad_norm=1.0, noise_multiplier=1.0
):
    sample_grads = tuple(param.grad_sample for param in model.parameters())

    # step 0: compute the norms
    sample_norms, batch_size = compute_norms(sample_grads)

    # step 1: compute clipping factors
    clip_factor = max_per_sample_grad_norm / (sample_norms + 1e-6)
    clip_factor = clip_factor.clamp(max=1.0)

    # step 2: clip
    grads = tuple(
        torch.einsum("i,i...", clip_factor, sample_grad) for sample_grad in sample_grads
    )

    # step 3: add gaussian noise
    stddev = max_per_sample_grad_norm * noise_multiplier
    noises = tuple(
        torch.normal(0, stddev, grad_param.shape, device=grad_param.device)
        for grad_param in grads
    )
    grads = tuple(noise + grad_param for noise, grad_param in zip(noises, grads))

    # step 4: assign the new grads, delete the sample grads
    for param, param_grad in zip(model.parameters(), grads):
        param.grad = param_grad / batch_size
        del param.grad_sample


def train(args, model, train_loader, optimizer, epoch, device):
    start_time = datetime.now()

    criterion = nn.CrossEntropyLoss()

    losses = []
    top1_acc = []

    for i, (images, target) in enumerate(tqdm(train_loader)):
        images = images.to(device)
        target = target.to(device)

        # Step 1: compute per-sample-grads

        # To use vmap+grad to compute per-sample-grads, the forward pass
        # must be re-formulated on a single example.
        # We use the `grad` operator to compute forward+backward on a single example,
        # and finally `vmap` to do forward+backward on multiple examples.
        def compute_loss_and_output(weights, image, target):
            images = image.unsqueeze(0)
            targets = target.unsqueeze(0)
            output = functional_call(model, weights, images)
            loss = criterion(output, targets)
            return loss, output.squeeze(0)

        # `grad(f)` is a functional API that returns a function `f'` that
        # computes gradients by running both the forward and backward pass.
        # We want to extract some intermediate
        # values from the computation (i.e. the loss and output).
        #
        # To extract the loss, we use the `grad_and_value` API, that returns the
        # gradient of the weights w.r.t. the loss and the loss.
        #
        # To extract the output, we use the `has_aux=True` flag.
        # `has_aux=True` assumes that `f` returns a tuple of two values,
        # where the first is to be differentiated and the second "auxiliary value"
        # is not to be differentiated. `f'` returns the gradient w.r.t. the loss,
        # the loss, and the auxiliary value.
        grads_loss_output = grad_and_value(compute_loss_and_output, has_aux=True)
        weights = dict(model.named_parameters())

        # detaching weights since we don't need to track gradients outside of transforms
        # and this is more performant
        detached_weights = {k: v.detach() for k, v in weights.items()}
        sample_grads, (sample_loss, output) = vmap(grads_loss_output, (None, 0, 0))(
            detached_weights, images, target
        )
        loss = sample_loss.mean()

        for name, grad_sample in sample_grads.items():
            weights[name].grad_sample = grad_sample.detach()

        # Step 2: Clip the per-sample-grads, sum them to form grads, and add noise
        clip_and_accumulate_and_add_noise(
            model, args.max_per_sample_grad_norm, args.sigma
        )

        preds = np.argmax(output.detach().cpu().numpy(), axis=1)
        labels = target.detach().cpu().numpy()
        losses.append(loss.item())

        # measure accuracy and record loss
        acc1 = accuracy(preds, labels)

        top1_acc.append(acc1)

        # make sure we take a step after processing the last mini-batch in the
        # epoch to ensure we start the next epoch with a clean state
        optimizer.step()
        optimizer.zero_grad()

        if i % args.print_freq == 0:
            print(
                f"\tTrain Epoch: {epoch} \t"
                f"Loss: {np.mean(losses):.6f} "
                f"Acc@1: {np.mean(top1_acc):.6f} "
            )
    train_duration = datetime.now() - start_time
    return train_duration


def test(args, model, test_loader, device):
    model.eval()
    criterion = nn.CrossEntropyLoss()
    losses = []
    top1_acc = []

    with torch.no_grad():
        for images, target in tqdm(test_loader):
            images = images.to(device)
            target = target.to(device)

            output = model(images)
            loss = criterion(output, target)
            preds = np.argmax(output.detach().cpu().numpy(), axis=1)
            labels = target.detach().cpu().numpy()
            acc1 = accuracy(preds, labels)

            losses.append(loss.item())
            top1_acc.append(acc1)

    top1_avg = np.mean(top1_acc)

    print(f"\tTest set:" f"Loss: {np.mean(losses):.6f} " f"Acc@1: {top1_avg :.6f} ")
    return np.mean(top1_acc)


# flake8: noqa: C901
def main():
    args = parse_args()

    if args.debug >= 1:
        logger.setLevel(level=logging.DEBUG)

    device = args.device

    if args.secure_rng:
        try:
            import torchcsprng as prng
        except ImportError as e:
            msg = (
                "To use secure RNG, you must install the torchcsprng package! "
                "Check out the instructions here: https://github.com/pytorch/csprng#installation"
            )
            raise ImportError(msg) from e

        generator = prng.create_random_device_generator("/dev/urandom")

    else:
        generator = None

    augmentations = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ]
    train_transform = transforms.Compose(normalize)

    test_transform = transforms.Compose(normalize)

    train_dataset = CIFAR10(
        root=args.data_root, train=True, download=True, transform=train_transform
    )

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=int(args.sample_rate * len(train_dataset)),
        generator=generator,
        num_workers=args.workers,
        pin_memory=True,
    )

    test_dataset = CIFAR10(
        root=args.data_root, train=False, download=True, transform=test_transform
    )
    test_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=args.batch_size_test,
        shuffle=False,
        num_workers=args.workers,
    )

    best_acc1 = 0

    model = models.__dict__[args.architecture](
        pretrained=False, norm_layer=(lambda c: nn.GroupNorm(args.gn_groups, c))
    )
    model = model.to(device)

    if args.optim == "SGD":
        optimizer = optim.SGD(
            model.parameters(),
            lr=args.lr,
            momentum=args.momentum,
            weight_decay=args.weight_decay,
        )
    elif args.optim == "RMSprop":
        optimizer = optim.RMSprop(model.parameters(), lr=args.lr)
    elif args.optim == "Adam":
        optimizer = optim.Adam(model.parameters(), lr=args.lr)
    else:
        raise NotImplementedError("Optimizer not recognized. Please check spelling")

    # Store some logs
    accuracy_per_epoch = []
    time_per_epoch = []

    for epoch in range(args.start_epoch, args.epochs + 1):
        if args.lr_schedule == "cos":
            lr = args.lr * 0.5 * (1 + np.cos(np.pi * epoch / (args.epochs + 1)))
            for param_group in optimizer.param_groups:
                param_group["lr"] = lr

        train_duration = train(args, model, train_loader, optimizer, epoch, device)
        top1_acc = test(args, model, test_loader, device)

        # remember best acc@1 and save checkpoint
        is_best = top1_acc > best_acc1
        best_acc1 = max(top1_acc, best_acc1)

        time_per_epoch.append(train_duration)
        accuracy_per_epoch.append(float(top1_acc))

        save_checkpoint(
            {
                "epoch": epoch + 1,
                "arch": "Convnet",
                "state_dict": model.state_dict(),
                "best_acc1": best_acc1,
                "optimizer": optimizer.state_dict(),
            },
            is_best,
            filename=args.checkpoint_file + ".tar",
        )

    time_per_epoch_seconds = [t.total_seconds() for t in time_per_epoch]
    avg_time_per_epoch = sum(time_per_epoch_seconds) / len(time_per_epoch_seconds)
    metrics = {
        "accuracy": best_acc1,
        "accuracy_per_epoch": accuracy_per_epoch,
        "avg_time_per_epoch_str": str(timedelta(seconds=int(avg_time_per_epoch))),
        "time_per_epoch": time_per_epoch_seconds,
    }

    logger.info(
        "\nNote:\n- 'total_time' includes the data loading time, training time and testing time.\n- 'time_per_epoch' measures the training time only.\n"
    )
    logger.info(metrics)


def parse_args():
    parser = argparse.ArgumentParser(description="PyTorch CIFAR10 DP Training")
    parser.add_argument(
        "-j",
        "--workers",
        default=2,
        type=int,
        metavar="N",
        help="number of data loading workers (default: 2)",
    )
    parser.add_argument(
        "--epochs",
        default=90,
        type=int,
        metavar="N",
        help="number of total epochs to run",
    )
    parser.add_argument(
        "--start-epoch",
        default=1,
        type=int,
        metavar="N",
        help="manual epoch number (useful on restarts)",
    )
    parser.add_argument(
        "-b",
        "--batch-size-test",
        default=256,
        type=int,
        metavar="N",
        help="mini-batch size for test dataset (default: 256)",
    )
    parser.add_argument(
        "--sample-rate",
        default=0.005,
        type=float,
        metavar="SR",
        help="sample rate used for batch construction (default: 0.005)",
    )
    parser.add_argument(
        "--lr",
        "--learning-rate",
        default=0.1,
        type=float,
        metavar="LR",
        help="initial learning rate",
        dest="lr",
    )
    parser.add_argument(
        "--momentum", default=0.9, type=float, metavar="M", help="SGD momentum"
    )
    parser.add_argument(
        "--wd",
        "--weight-decay",
        default=0,
        type=float,
        metavar="W",
        help="SGD weight decay",
        dest="weight_decay",
    )
    parser.add_argument(
        "-p",
        "--print-freq",
        default=10,
        type=int,
        metavar="N",
        help="print frequency (default: 10)",
    )
    parser.add_argument(
        "--resume",
        default="",
        type=str,
        metavar="PATH",
        help="path to latest checkpoint (default: none)",
    )
    parser.add_argument(
        "-e",
        "--evaluate",
        dest="evaluate",
        action="store_true",
        help="evaluate model on validation set",
    )
    parser.add_argument(
        "--seed", default=None, type=int, help="seed for initializing training. "
    )

    parser.add_argument(
        "--sigma",
        type=float,
        default=1.5,
        metavar="S",
        help="Noise multiplier (default 1.0)",
    )
    parser.add_argument(
        "-c",
        "--max-per-sample-grad_norm",
        type=float,
        default=10.0,
        metavar="C",
        help="Clip per-sample gradients to this norm (default 1.0)",
    )
    parser.add_argument(
        "--secure-rng",
        action="store_true",
        default=False,
        help="Enable Secure RNG to have trustworthy privacy guarantees."
        "Comes at a performance cost. Opacus will emit a warning if secure rng is off,"
        "indicating that for production use it's recommender to turn it on.",
    )
    parser.add_argument(
        "--delta",
        type=float,
        default=1e-5,
        metavar="D",
        help="Target delta (default: 1e-5)",
    )

    parser.add_argument(
        "--checkpoint-file",
        type=str,
        default="checkpoint",
        help="path to save check points",
    )
    parser.add_argument(
        "--data-root",
        type=str,
        default="../cifar10",
        help="Where CIFAR10 is/will be stored",
    )
    parser.add_argument(
        "--log-dir",
        type=str,
        default="/tmp/stat/tensorboard",
        help="Where Tensorboard log will be stored",
    )
    parser.add_argument(
        "--optim",
        type=str,
        default="SGD",
        help="Optimizer to use (Adam, RMSprop, SGD)",
    )
    parser.add_argument(
        "--lr-schedule", type=str, choices=["constant", "cos"], default="cos"
    )

    parser.add_argument(
        "--device", type=str, default="cpu", help="Device on which to run the code."
    )

    parser.add_argument(
        "--architecture",
        type=str,
        default="resnet18",
        help="model from torchvision to run",
    )

    parser.add_argument(
        "--gn-groups",
        type=int,
        default=8,
        help="Number of groups in GroupNorm",
    )

    parser.add_argument(
        "--clip-per-layer",
        "--clip_per_layer",
        action="store_true",
        default=False,
        help="Use static per-layer clipping with the same clipping threshold for each layer. Necessary for DDP. If `False` (default), uses flat clipping.",
    )
    parser.add_argument(
        "--debug",
        type=int,
        default=0,
        help="debug level (default: 0)",
    )

    return parser.parse_args()


if __name__ == "__main__":
    main()
