#version 450 core #define PRECISION ${PRECISION} #define FORMAT ${FORMAT} /* * TILE_SIZE = (1, 1, 1) * WEIGHT_STORAGE = TEXTURE_3D * BIAS_STORAGE = TEXTURE_3D * Note that for DW kernel IC = 1 so the weight layout is really OC4, H, W, 4oc */ layout(std430) buffer; /* Qualifiers: layout - storage - precision - memory */ /* * Output Image */ layout(set = 0, binding = 0, rgba8ui) uniform PRECISION restrict writeonly uimage3D uOutput; /* * Input Textures */ layout(set = 0, binding = 1) uniform PRECISION isampler3D uInput; layout(set = 0, binding = 2) uniform PRECISION sampler2D uKernel; layout(set = 0, binding = 3) uniform PRECISION sampler2D uBias; /* * Params Buffer */ layout(set = 0, binding = 4) uniform PRECISION restrict Block { // quantization scales, xyzw corresponds to output, input, kernel, bias vec4 scales; // quantization zero points, xyzw corresponds to output, input, kernel, bias ivec4 zero_points; // extents of the output texture ivec4 out_extents; // extents of the input texture ivec4 in_extents; // size of the overlay region of the kernel ivec4 overlay_region; // width and height of the kernel ivec2 kernel_size; // convolution parameters ivec2 stride; ivec2 padding; ivec2 dilate; vec2 clamp_thresh; } uBlock; /* * Local Work Group */ layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in; /* * Dequantizes a float texel based on a scale and zero point. */ vec4 dequantize(vec4 tex, float scale, int zero_point) { return scale * (tex - zero_point); } /* * Quantizes a float texel based on a scale and zero point. */ uvec4 quantize(vec4 tex, float scale, int zero_point) { return uvec4(roundEven(tex / scale) + zero_point); } void main() { const ivec3 pos = ivec3(gl_GlobalInvocationID); // Return if this global position is outside output texture bounds if (any(greaterThanEqual(pos, uBlock.out_extents.xyz))) { return; } // Compute the index of the top-left element of the overlay region. Note that // negative indices can be produced indicating that the top-left element is in // a region added by padding. const ivec2 ipos = pos.xy * uBlock.stride - uBlock.padding; // Compute the start and end of the input indices to load. Padding is assumed // to be constant 0 padding, so any reads from the padding region is skipped. const ivec2 start = max(ivec2(0), ipos); const ivec2 end = min(ipos + uBlock.overlay_region.xy, uBlock.in_extents.xy); // Compute the start of the kernel based on how far we are skipping ahead when // reading the input const ivec2 kstart = (start - ipos) / uBlock.dilate; vec4 sum = texelFetch(uBias, ivec2(pos.z, 0), 0); const int dil_y = uBlock.dilate.y; const int dil_x = uBlock.dilate.x; for (int y = start.y, ky = kstart.y; y < end.y; y += dil_y, ky++) { for (int x = start.x, kx = kstart.x; x < end.x; x += dil_x, kx++) { // The weight kernel was rearranged so that every NxN filter was flattened // so that it fits on one row. Each filter was then stacked on top of each // other vertically. const int k_ind = kx + ky * uBlock.kernel_size.x; const vec4 k_tex = texelFetch(uKernel, ivec2(k_ind, pos.z), 0); const vec4 in_tex = dequantize( texelFetch(uInput, ivec3(x, y, pos.z), 0), uBlock.scales.y, uBlock.zero_points.y); sum = fma(in_tex, k_tex, sum); } } uvec4 out_tex = quantize( clamp(sum, uBlock.clamp_thresh.x, uBlock.clamp_thresh.y), uBlock.scales.x, uBlock.zero_points.x); imageStore(uOutput, pos, out_tex); }