/* * Copyright © 2023 Valve Corporation * * SPDX-License-Identifier: MIT */ #version 460 #extension GL_GOOGLE_include_directive : require #extension GL_EXT_shader_explicit_arithmetic_types_int8 : require #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require #extension GL_EXT_shader_explicit_arithmetic_types_int32 : require #extension GL_EXT_shader_explicit_arithmetic_types_int64 : require #extension GL_EXT_shader_explicit_arithmetic_types_float16 : require #extension GL_EXT_scalar_block_layout : require #extension GL_EXT_buffer_reference : require #extension GL_EXT_buffer_reference2 : require #extension GL_KHR_memory_scope_semantics : require layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in; #include "build_interface.h" layout(push_constant) uniform CONSTS { update_args args; }; uint32_t fetch_parent_node(VOID_REF bvh, uint32_t node) { uint64_t addr = bvh - node / 8 * 4 - 4; return DEREF(REF(uint32_t)(addr)); } void main() { uint32_t bvh_offset = DEREF(args.src).bvh_offset; VOID_REF src_bvh = OFFSET(args.src, bvh_offset); VOID_REF dst_bvh = OFFSET(args.dst, bvh_offset); uint32_t leaf_node_size; if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) leaf_node_size = SIZEOF(radv_bvh_triangle_node); else if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_AABBS_KHR) leaf_node_size = SIZEOF(radv_bvh_aabb_node); else leaf_node_size = SIZEOF(radv_bvh_instance_node); uint32_t leaf_node_id = args.geom_data.first_id + gl_GlobalInvocationID.x; uint32_t first_leaf_offset = id_to_offset(RADV_BVH_ROOT_NODE) + SIZEOF(radv_bvh_box32_node); uint32_t dst_offset = leaf_node_id * leaf_node_size + first_leaf_offset; VOID_REF dst_ptr = OFFSET(dst_bvh, dst_offset); uint32_t src_offset = gl_GlobalInvocationID.x * args.geom_data.stride; radv_aabb bounds; bool is_active; if (args.geom_data.geometry_type == VK_GEOMETRY_TYPE_TRIANGLES_KHR) { is_active = build_triangle(bounds, dst_ptr, args.geom_data, gl_GlobalInvocationID.x); } else { VOID_REF src_ptr = OFFSET(args.geom_data.data, src_offset); is_active = build_aabb(bounds, src_ptr, dst_ptr, args.geom_data.geometry_id, gl_GlobalInvocationID.x); } if (!is_active) return; DEREF(INDEX(radv_aabb, args.leaf_bounds, leaf_node_id)) = bounds; memoryBarrier(gl_ScopeDevice, gl_StorageSemanticsBuffer, gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible); uint32_t node_id = pack_node_id(dst_offset, 0); uint32_t parent_id = fetch_parent_node(src_bvh, node_id); uint32_t internal_nodes_offset = first_leaf_offset + args.leaf_node_count * leaf_node_size; while (parent_id != RADV_BVH_INVALID_NODE) { uint32_t offset = id_to_offset(parent_id); uint32_t parent_index = (offset - internal_nodes_offset) / SIZEOF(radv_bvh_box32_node) + 1; if (parent_id == RADV_BVH_ROOT_NODE) parent_index = 0; /* Make accesses to internal nodes in dst_bvh available and visible */ memoryBarrier(gl_ScopeDevice, gl_StorageSemanticsBuffer, gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible); REF(radv_bvh_box32_node) src_node = REF(radv_bvh_box32_node)OFFSET(src_bvh, offset); REF(radv_bvh_box32_node) dst_node = REF(radv_bvh_box32_node)OFFSET(dst_bvh, offset); uint32_t children[4]; for (uint32_t i = 0; i < 4; ++i) children[i] = DEREF(src_node).children[i]; uint32_t valid_child_count = 0; for (uint32_t i = 0; i < 4; ++valid_child_count, ++i) if (children[i] == RADV_BVH_INVALID_NODE) break; /* Check if all children have been processed. As this is an atomic the last path coming from * a child will pass here, while earlier paths break. */ uint32_t ready_child_count = atomicAdd( DEREF(INDEX(uint32_t, args.internal_ready_count, parent_index)), 1, gl_ScopeDevice, gl_StorageSemanticsBuffer, gl_SemanticsAcquireRelease | gl_SemanticsMakeAvailable | gl_SemanticsMakeVisible); if (ready_child_count != valid_child_count - 1) break; for (uint32_t i = 0; i < 4; ++i) DEREF(dst_node).children[i] = children[i]; for (uint32_t i = 0; i < valid_child_count; ++i) { uint32_t child_offset = id_to_offset(children[i]); radv_aabb child_bounds; if (child_offset == dst_offset) child_bounds = bounds; else if (child_offset >= internal_nodes_offset) { child_bounds = radv_aabb(vec3(INFINITY), vec3(-INFINITY)); REF(radv_bvh_box32_node) child_node = REF(radv_bvh_box32_node)OFFSET(dst_bvh, child_offset); for (uint32_t j = 0; j < 4; ++j) { if (DEREF(child_node).children[j] == RADV_BVH_INVALID_NODE) break; child_bounds.min = min(child_bounds.min, DEREF(child_node).coords[j].min); child_bounds.max = max(child_bounds.max, DEREF(child_node).coords[j].max); } } else { uint32_t child_index = (child_offset - first_leaf_offset) / leaf_node_size; child_bounds = DEREF(INDEX(radv_aabb, args.leaf_bounds, child_index)); } DEREF(dst_node).coords[i] = child_bounds; } if (parent_id == RADV_BVH_ROOT_NODE) { radv_aabb root_bounds = radv_aabb(vec3(INFINITY), vec3(-INFINITY)); for (uint32_t i = 0; i < valid_child_count; ++i) { radv_aabb bounds = DEREF(dst_node).coords[i]; root_bounds.min = min(root_bounds.min, bounds.min); root_bounds.max = max(root_bounds.max, bounds.max); } DEREF(args.dst).aabb = root_bounds; } parent_id = fetch_parent_node(src_bvh, parent_id); } }