/*
 * Copyright 2013, Google LLC
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google LLC nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package com.android.tools.smali.util;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;

/**
 * SparseArrays map integers to Objects.  Unlike a normal array of Objects,
 * there can be gaps in the indices.  It is intended to be more efficient
 * than using a HashMap to map Integers to Objects.
 */
public class SparseArray<E> {
    private static final Object DELETED = new Object();
    private boolean mGarbage = false;

    /**
     * Creates a new SparseArray containing no mappings.
     */
    public SparseArray() {
        this(10);
    }

    /**
     * Creates a new SparseArray containing no mappings that will not
     * require any additional memory allocation to store the specified
     * number of mappings.
     */
    public SparseArray(int initialCapacity) {
        mKeys = new int[initialCapacity];
        mValues = new Object[initialCapacity];
        mSize = 0;
    }

    /**
     * Gets the Object mapped from the specified key, or <code>null</code>
     * if no such mapping has been made.
     */
    public E get(int key) {
        return get(key, null);
    }

    /**
     * Gets the Object mapped from the specified key, or the specified Object
     * if no such mapping has been made.
     */
    public E get(int key, E valueIfKeyNotFound) {
        int i = binarySearch(mKeys, 0, mSize, key);

        if (i < 0 || mValues[i] == DELETED) {
            return valueIfKeyNotFound;
        } else {
            return (E) mValues[i];
        }
    }

    /**
     * Removes the mapping from the specified key, if there was any.
     */
    public void delete(int key) {
        int i = binarySearch(mKeys, 0, mSize, key);

        if (i >= 0) {
            if (mValues[i] != DELETED) {
                mValues[i] = DELETED;
                mGarbage = true;
            }
        }
    }

    /**
     * Alias for {@link #delete(int)}.
     */
    public void remove(int key) {
        delete(key);
    }

    private void gc() {
        // Log.e("SparseArray", "gc start with " + mSize);

        int n = mSize;
        int o = 0;
        int[] keys = mKeys;
        Object[] values = mValues;

        for (int i = 0; i < n; i++) {
            Object val = values[i];

            if (val != DELETED) {
                if (i != o) {
                    keys[o] = keys[i];
                    values[o] = val;
                }

                o++;
            }
        }

        mGarbage = false;
        mSize = o;

        // Log.e("SparseArray", "gc end with " + mSize);
    }

    /**
     * Adds a mapping from the specified key to the specified value,
     * replacing the previous mapping from the specified key if there
     * was one.
     */
    public void put(int key, E value) {
        int i = binarySearch(mKeys, 0, mSize, key);

        if (i >= 0) {
            mValues[i] = value;
        } else {
            i = ~i;

            if (i < mSize && mValues[i] == DELETED) {
                mKeys[i] = key;
                mValues[i] = value;
                return;
            }

            if (mGarbage && mSize >= mKeys.length) {
                gc();

                // Search again because indices may have changed.
                i = ~binarySearch(mKeys, 0, mSize, key);
            }

            if (mSize >= mKeys.length) {
                int n = Math.max(mSize + 1, mKeys.length * 2);

                int[] nkeys = new int[n];
                Object[] nvalues = new Object[n];

                // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
                System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
                System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

                mKeys = nkeys;
                mValues = nvalues;
            }

            if (mSize - i != 0) {
                // Log.e("SparseArray", "move " + (mSize - i));
                System.arraycopy(mKeys, i, mKeys, i + 1, mSize - i);
                System.arraycopy(mValues, i, mValues, i + 1, mSize - i);
            }

            mKeys[i] = key;
            mValues[i] = value;
            mSize++;
        }
    }

    /**
     * Returns the number of key-value mappings that this SparseArray
     * currently stores.
     */
    public int size() {
        if (mGarbage) {
            gc();
        }

        return mSize;
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, returns
     * the key from the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     */
    public int keyAt(int index) {
        if (mGarbage) {
            gc();
        }

        return mKeys[index];
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, returns
     * the value from the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     */
    public E valueAt(int index) {
        if (mGarbage) {
            gc();
        }

        return (E) mValues[index];
    }

    /**
     * Given an index in the range <code>0...size()-1</code>, sets a new
     * value for the <code>index</code>th key-value mapping that this
     * SparseArray stores.
     */
    public void setValueAt(int index, E value) {
        if (mGarbage) {
            gc();
        }

        mValues[index] = value;
    }

    /**
     * Returns the index for which {@link #keyAt} would return the
     * specified key, or a negative number if the specified
     * key is not mapped.
     */
    public int indexOfKey(int key) {
        if (mGarbage) {
            gc();
        }

        return binarySearch(mKeys, 0, mSize, key);
    }

    /**
     * Returns an index for which {@link #valueAt} would return the
     * specified key, or a negative number if no keys map to the
     * specified value.
     * Beware that this is a linear search, unlike lookups by key,
     * and that multiple keys can map to the same value and this will
     * find only one of them.
     */
    public int indexOfValue(E value) {
        if (mGarbage) {
            gc();
        }

        for (int i = 0; i < mSize; i++)
            if (mValues[i] == value)
                return i;

        return -1;
    }

    /**
     * Removes all key-value mappings from this SparseArray.
     */
    public void clear() {
        int n = mSize;
        Object[] values = mValues;

        for (int i = 0; i < n; i++) {
            values[i] = null;
        }

        mSize = 0;
        mGarbage = false;
    }

    /**
     * Puts a key/value pair into the array, optimizing for the case where
     * the key is greater than all existing keys in the array.
     */
    public void append(int key, E value) {
        if (mSize != 0 && key <= mKeys[mSize - 1]) {
            put(key, value);
            return;
        }

        if (mGarbage && mSize >= mKeys.length) {
            gc();
        }

        int pos = mSize;
        if (pos >= mKeys.length) {
            int n = Math.max(pos + 1, mKeys.length * 2);

            int[] nkeys = new int[n];
            Object[] nvalues = new Object[n];

            // Log.e("SparseArray", "grow " + mKeys.length + " to " + n);
            System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
            System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

            mKeys = nkeys;
            mValues = nvalues;
        }

        mKeys[pos] = key;
        mValues[pos] = value;
        mSize = pos + 1;
    }

    /**
     * Increases the size of the underlying storage if needed, to ensure that it can
     * hold the specified number of items without having to allocate additional memory
     * @param capacity the number of items
     */
    public void ensureCapacity(int capacity) {
        if (mGarbage && mSize >= mKeys.length) {
            gc();
        }

        if (mKeys.length < capacity) {
            int[] nkeys = new int[capacity];
            Object[] nvalues = new Object[capacity];

            System.arraycopy(mKeys, 0, nkeys, 0, mKeys.length);
            System.arraycopy(mValues, 0, nvalues, 0, mValues.length);

            mKeys = nkeys;
            mValues = nvalues;
        }
    }

    private static int binarySearch(int[] a, int start, int len, int key) {
        int high = start + len, low = start - 1, guess;

        while (high - low > 1) {
            guess = (high + low) / 2;

            if (a[guess] < key)
                low = guess;
            else
                high = guess;
        }

        if (high == start + len)
            return ~(start + len);
        else if (a[high] == key)
            return high;
        else
            return ~high;
    }

    /**
     * @return a read-only list of the values in this SparseArray which are in ascending order, based on their
     * associated key
     */
    public List<E> getValues() {
        return Collections.unmodifiableList(Arrays.asList((E[])mValues));
    }

    private int[] mKeys;
    private Object[] mValues;
    private int mSize;
}
