/* * Copyright (c) Meta Platforms, Inc. and affiliates. * All rights reserved. * * This source code is licensed under the BSD-style license found in the * LICENSE file in the root directory of this source tree. */ #version 450 core #define PRECISION ${PRECISION} #define VEC4_T ${texel_load_type(DTYPE, STORAGE)} #define FLOAT_T ${buffer_scalar_type(DTYPE)} ${define_active_storage_type(STORAGE)} ${define_required_extensions(DTYPE)} ${define_required_extensions("int8")} #include "indexing_utils.h" layout(std430) buffer; ${layout_declare_tensor(0, "w", "t_out", DTYPE, STORAGE)} ${layout_declare_tensor(1, "r", "t_mat1", DTYPE, STORAGE)} ${layout_declare_tensor(2, "r", "t_qmat2", "int8", STORAGE)} ${layout_declare_tensor(3, "r", "t_scales", DTYPE, STORAGE)} $if STORAGE == "buffer": ${layout_declare_ubo(4, "ivec4", "out_sizes")} ${layout_declare_ubo(5, "ivec4", "out_strides")} ${layout_declare_ubo(6, "int", "out_numel")} ${layout_declare_ubo(7, "ivec4", "mat1_sizes")} ${layout_declare_ubo(8, "ivec4", "mat1_strides")} ${layout_declare_ubo(9, "ivec4", "qmat2_strides")} ${layout_declare_ubo(10, "ivec4", "scales_strides")} $else: ${layout_declare_ubo(4, "ivec3", "out_limits")} ${layout_declare_ubo(5, "ivec4", "mat1_sizes")} layout(local_size_x_id = 0, local_size_y_id = 1, local_size_z_id = 2) in; // This header file must be defined after the layout descriptors have been // declared because the functions in the header assume some variables have been // declared as layout descriptors. #ifdef USING_BUFFER #ifndef FLOAT_T #define FLOAT_T float #endif FLOAT_T q_8w_linear(const ivec4 out_idx, const int K) { const FLOAT_T scale = t_scales[out_idx.x]; FLOAT_T outval = FLOAT_T(0.0); // Initial mat1 tensor idx will be (0, out_idx.y, out_idx.z, 0) int mat1_offset = out_idx.y * mat1_strides.y + out_idx.z * qmat2_strides.z; // Initial qmat2 tensor idx wil be (0, out_idx.x, 0, 0); note that the qmat2 // tensor is transposed int qmat2_offset = out_idx.x * qmat2_strides.y; // TODO(ssjia): optimize memory access pattern by traversing K in inner loop for (int i = 0; i < K; i++) { const FLOAT_T mat1_val = t_mat1[mat1_offset]; const FLOAT_T mat2_val = t_qmat2[qmat2_offset] * scale; outval += mat1_val * mat2_val; mat1_offset++; qmat2_offset++; } return outval; } void main() { const int out_bufi = int(gl_GlobalInvocationID.x); if (out_bufi >= out_numel) { return; } const ivec4 out_tidx = bufi_to_tidx(out_bufi, out_strides, 0); t_out[out_bufi] = q_8w_linear(out_tidx, mat1_sizes.x); } #else // USING_TEXTURE #extension GL_EXT_shader_explicit_arithmetic_types_int16 : require VEC4_T q_8w_linear(const u16vec3 out_pos, const uint16_t K) { const uint16_t qmat2_pos_y = out_pos.x * uint16_t(4); VEC4_T outtex = VEC4_T(0); const u16vec3 scales_pos = u16vec3(out_pos.x, 0, 0); const VEC4_T scales = load_texel(t_scales, scales_pos); for (uint16_t i = uint16_t(0), x = uint16_t(0); i < K; i += uint16_t(4), x++) { const VEC4_T mat1_tex = load_texel(t_mat1, u16vec3(x, out_pos.yz)); const VEC4_T sums = VEC4_T( dot(mat1_tex, load_texel(t_qmat2, u16vec3(x, qmat2_pos_y, 0))), dot(mat1_tex, load_texel(t_qmat2, u16vec3(x, qmat2_pos_y + uint16_t(1), 0))), dot(mat1_tex, load_texel(t_qmat2, u16vec3(x, qmat2_pos_y + uint16_t(2), 0))), dot(mat1_tex, load_texel(t_qmat2, u16vec3(x, qmat2_pos_y + uint16_t(3), 0)))); outtex += sums; } outtex *= scales; return outtex; } void main() { const u16vec3 out_pos = u16vec3( gl_GlobalInvocationID.x / out_limits.y, gl_GlobalInvocationID.x % out_limits.y, 0); if (out_pos.x >= out_limits.x) { return; } VEC4_T outtex = q_8w_linear(out_pos, uint16_t(mat1_sizes.x)); write_texel(t_out, out_pos, outtex); } #endif