Capstone: Next-Gen Disassembly Framework

www.capstone-engine.org

Nguyen Anh Quynh, Coseinc
<aquynh@gmail.com>

Blackhat USA, August 7th 2014

1/53 Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Agenda

@ Disassembly engines & their issues
@ Capstone: general ideas & design
o Capstone goals
o Capstone design
© Capstone implementation
@ Some tricky X86 instructions

© Applications

@ Conclusions

2 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Story behind Capstone

Wanted a decent disassembly framework for my project (2013)
e X86 + ARM
e Windows + Linux
@ Friendly license (no GPL)

Capstone is our solution with much more features! J

3/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Available disassembly frameworks & problems J

4 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Binary analysis & software exploit

Binary analysis
@ Reverse binary code (like malware) for good internal understanding.
@ Analyze binary code to find vulnerabilities.

@ Debug machine code.

Machine level code is the only input — working with assembly code is
the only choice

Software exploit
o Writing exploitation for software vulnerabilities.

@ Building shellcode is an important part of the process.

Machine level shellcode is mandatory — working with assembly code is
the only choice

5/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Disassemble machine code

@ Given binary code, decode and give back assembly code.
» 01D8 = ADD EAX, EBX (x86)
» 1160 = STR R1, [R2] (Arm's Thumb)
e Core part of all binary analysis/reverse tool/debugger/exploit
development.

@ Disassembly framework (or engine/library) is a lower layer in stack of
architecture.

Binary
analysis

Disassembly Engine

Exploitation

Debugger Dev

6 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Building disassembly frameworks

@ Need good understanding on hardware architectures + instruction
sets.

@ Decoding the binary code properly to return the assembly.

@ Break down assembly in details to help applications to understand
instruction internals

add dword ptr [ebx + eaxk4 + 2], ebx
Prefix: 0x00 0x00 0x00 0x00
Opcode: 0x01 0x00 0x00 0x00
rex: 0x0
addr_size: 4
modrm: @x5c
disp: 0x02
sib: 0x83
sib_base: ebx
sib_index: eax
sib_scale: 4
op_count: 2
operands [0] . type: MEM
operands [@] .mem.base: REG = ebx
operands [@] .mem. index: REG = eax
operands [@] .mem. scale: 4
operands [@] .mem.disp: 0x02
operands[0].size: 4
operands[1].type: REG = ebx
operands[1].size: 4
Implicit registers modified: eflags

7/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com> Capstone: Next-Gen Disassembly Framework

X86 instruction encoding

= 4 sestonal
Stant lleg I REX
prefix [¥ |prefic

Nguyen Anh

1248

d

9 [if

NOTES:

. REX prefix is not allowed in extended

@

s that employ the
VEX or XOP prefixes
map = VEX/XOPmap_select field

. The total number of bytes in an

instruction encoding must be less than
orequal to 15

. Instructions that encode an 8-byte

immediate field do not use a displace-
ment field and vice ves

Vit enoode syntscips

Building disassembly frameworks is tedious

Lots of time spent on understanding instruction encoding schemes.
Too many instructions to deal with.

Too many corner cases & undocumented instructions (X86).

Too many architectures: X86, Arm, Arm64, Mips, PPC, Sparc, etc.

Language bindings hard to build: Python, Ruby, Java, C#,
Javascript, etc

9/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Demanding for a good disassembly framework

@ Simple requirements
» Multiple archs: X86 + Arm
Actively maintained & update with latest arch’s changes
Multiple platforms: Windows + Linux
Support Python+Ruby as binding languages
Friendly license (GPL is bad!)

@ Long standing issue for the security community - with no adequate
solution even in 2013.

vV vy VvVYyy

10 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Available frameworks (2013)

X86|Arm VX VX VX Vv !

Linux|Windows are ars ars VX
Python|Ruby bindings VX2 VX vV IX VX
Update X ? X X |
License GPL LGPL3 BSD GPL |

Poor quality
2Incomplete & unmaintained

/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Problems

Nothing works even in 2013. Shame on this industry!
Apparently nobody wanted to step up to fix the issues.
No light at the end of the dark tunnel!

Until Capstone came to rescue!

12 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone = the next generation disassembly framework! J

13 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone's goals

Multi-arch: X86 + Arm + Arm64 + Mips + PPC (surpassed
eventually)

Multi-platform: Windows + MacOSX + Linux (surpassed eventually).
Multi-bindings: Python + Ruby + Java + C# (surpassed eventually).
Clean, simple, intuitive & architecture-neutral API.

Provide break-down details on instructions.

Friendly license: BSD.

Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Problems

Multi-arch: Too much works!
Multi-platform: Too much works!

Multi-bindings: Too much works!

Only possible to finish in few years with very limited resource?

15 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Miracle happened: Capstone made it! J

16 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Timeline

@ August 2013: Started designing & implementing.
@ November 2013: Called for beta test in public.

@ December 2013: 1.0 & open source released
(www.capstone-engine.org).

January 2014: 2.0 released.

March 2014: 2.1 released.

April 2014: 2.1.2 released.

August 2014: 3.0 RC1 released (tentative).

Getting widely adopted by important tools, trainings & works
everywhere.

Packages readily available for all important Operating Systems
(Windows, MacOSX, Linux, *BSD)

17 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone status at 7-month old

Multi-arch: second only to Libopcode.

Multi-platform: second to none (Windows, OSX, Linux, *BSD, iOS,
Android, Solaris)

Multi-bindings: second to none (9 languages).

Provide more breakdown instruction details than others.

°
°

@ Update: more than others.

@ Mature: handle more tricky X86 instructions than others.
°

Docs: lots of articles for
compiling/installing /customizing /programming.

18 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone versus others

Multi-arch v X X X v
X-platform v ? ? ? X
Insn details v v v X X
Update v X ? X X
License BSD GPL LGPL3 BSD GPL

o Capstone's archs: Arm, Arm64, Mips, PPC, Sparc, SystemZ, X86,
XCore.

o Capstone's bindings: Python, Ruby, C++, C#, Java, NodelS
(JavaScript), GO, OCaml & Vala 3.

@ Distorm3's bindings: Python, Ruby (poor quality), Java, C#.
@ Others' bindings: Python.

3Python, Java & Ocaml maintained by Capstone. The rest made by community

19 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone design J

/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Target

@ Have all the desired features in under 1 year.
o With very limited resource available.

@ Impossible dream?

21 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Problems

Multi-arch: Too much works!
Multi-platform: Too much works!

Multi-bindings: Too much works!

Really possible to finish in few years - with very limited resource?

22 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Ambitions & ideas

@ Have all features in months, not years!
@ Stand on the shoulders of the giants at the initial phase.

@ Open source project to get community involved & contributed.

23 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Introduction on LLVM

LLVM project
@ Open source project on compiler: www.llvm.org
@ A set of frameworks to build compiler
@ Set of modules for machine code representing, compiling, optimizing.
°

Backed by many major players: AMD, Apple, Google, Intel, IBM,
ARM, Imgtec, Nvidia, Qualcomm, Samsung, etc.

Incredibly huge (compiler) community around.

24 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

LLVM model

Source

Frontend

Optimizer

Backend

Code
Compiler model
C - Clang C/C++/0bjC LLWVM
Frontend X86 Backend
Fortran == llvm-gee Frontend Dlp_llﬂ‘: ar Powe rlF_'lt_:Va‘ack end
Haskell | GHC Frontend i AR B

LLVM IR

Machine
Code

—= XB6

- PowerPC

—» ARM

LLVM model: separate Frontend - Optimization - Backend

/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Why LLVM?

Support multiple architectures.

Available disassembler internally in Machine Code (MC) module

» Only useable for LLVM modules, not for external code.
> Closely designed & implemented for LLVM.
» Very actively maintained & updated by a huge community.

BSD license.
Fork LLVM to build Capstone around MC!

Pick up only those archs having disassemblers: 8 archs for now.

Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

LLVM'’s Machine Code (MC) layer

Core layer of LLVM to integrate compiler with its internal assemblers.

Used by compiler, assembler, disassembler, debugger & JIT compilers

Centralize with a big table of description (TableGen) of machine
instructions.

@ Auto generate assembler, disassembler, and code emitter from
TableGen (*.inc) - with llvm-tablegen tool.

. Code
FrontEndH Optlmlser}[Generator H MC ,_

Object File (.0)

27 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Advantages

High quality code with lots of tested done using test cases.

Disassembler maintained by top experts of each archs.
» X86: maintained by Intel (arch creator).
» Arm+Arm64: maintained by Arm & Apple (arch creator & Arm64’s
device maker).
Mips: maintained by Imgtec (arch creator).
SystemZ: maintained by IBM (arch creator).
XCore: maintained by XMos (arch creator).
PPC & Sparc: highly active community.

vV vy VvYyy

New instructions & bugs fixed quite frequently!

Bugs can be either reported to us, or reported to upstream, then
ported back.

28 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Issues

@ Cannot just reuse MC as-is without huge efforts.

>

vV vy VY VvYy

LLVM code is in C++, but we want C code.

Code mixed like spaghetti with lots of LLVM layers.
Need to build instruction breakdown-details ourselves.
Expose semantics to the API.

Not designed to be thread-safe.

Poor Windows support.

@ Need to build all bindings ourselves.

@ Keep up with upstream code once forking LLVM to maitain ourselves.

29 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Decide where to make the cut

@ Fork LLVM but must remove everything we do not need
@ Where to make the cut?

» Cut too little result in keeping lots of redundant code.
» Cut too much would change the code structure, making it hard to port
changes from upstream.

@ Optimal design for Capstone chosen.

> Take the disasm core & make minimal changes.
» Reimplement required dependent layers ourselves.

JIT code

- Code
Front End HOptlmlserH e H MC

Object File (.0)

30/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Implementation 1 - replicate LLVM's MC

@ Build our core around Disassembler/InstPrinter layers of MC with
minimal changes.

» Rewrite dependent layers of Disassembler: MClnst, MClnstrDesc,
MCRegisterInfo.

» Rewrite dependent layers of InstPrinter: SStream.

@ Replace C++ class/method with pure C function pointers +

struct/unio

n.

e Fork llvm-tablegen to produce pure C code (*.inc files).

0x01D8 i

' ™\
Disassembler H InstPrinter H

L
Auto-gen code &
data from .TD files

-

S

MC layer

ADD EAX, EBX

31 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Implementation 2 - extend LLVM's MC

@ Hook into InstPrinter layer to build instruction’s details (cs_insn

struct)

» Instruction ID, size, mnemonic, operand-string.
» Operands (Immediate, Register, Memory types)
» Arch-dependent info for each arch (ex: Prefix, ModRM, SIB, etc for

X86)

@ Isolate some global variables to make Capstone thread-safe.

0x0108 9

' Y
Disassembler H InstPrinter H

"
Auto-gen code &

P—

J

MC layer

ADD EAX, EBX

32 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Implementation 3 - semantics information

@ Take instruction semantics info from *.TD files
> Available for code analysis & generator.
» Implicit registers read/written.
» Instruction’s groups.
@ Extract these info to put them in mapping tables & copy to cs_.insn
struct in InstPrinter layer.

= [AL,EFLAGS,AX], Uses = [AL] in
: I<0xF6, MRM5r, (outs), (ins GR8:Ssrc), "imul{b}\t$src", [],
IIC_IMUL8>, Sched<[WriteIMul]>;

def CVTSD25Srm : I<@x5A, MRMSrcMem, (outs FR32:5dst), (ins fé4mem:Ssrc),
"cvtsd2ss\t{$src, $dst|$dst, $src}”,
[(set FR32:5dst, (fround (loadfé64 addr:$src)))],
IIC_SSE_CVT_Scalar_RM=,
XD,
Requires<[UseSSE2, OptForSize]>, Sched<[WriteCvtF2FLd]>;

33/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com> Capstone: Next-Gen Disassembly Framework

cs_insn structure

@ Grouped into arch-independent + arch-dependent info.
» APl is arch-independent.

@ Grouped in basic mode (default) + detail mode.

id regs_read, regs_read_count
address regs_write, regs_write_count
size groups, groups_count

bytes

mnemonic
op_str X86 Arm Mips
detail

34 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone is superior to LLVM's disassembler

Independent framework - with zero dependency.

Much more compact in size.

Provide much more information than just assembly code.
Thread-safe design.

Able to embed into restricted firmware/OS environments.
Malware resistence (X86).

More optimization towards disassembling/reversing tasks.
More hardware modes supported: Big-Endian for Arm+Arm64
More instructions supported: 3DNow (X86).

More at www.capstone-engine.org/beyond_llvm.html

35/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Robustness of Capstone

@ Cannot always rely on LLVM to fix bugs

» Disassembler is still considered second-class in LLVM, especially if does
not affect code generation.
» May refuse to fix bugs if LLVM backend does not generate them.

* Tricky & corner cases of X86 code are example.
@ But handle all corner cases properly is Capstone'’s first priority.
» Handled all X86 malware tricks we are aware of - more than any others.

36 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Embedding Capstone into firmware/OS

Only build archs you really need.

Build engine in "diet" mode.

Build X86 engine in "reduced" mode.

Special APls designed to support embedding.

Find examples for Windows kernel driver + OSX kext in
source/docs/README.

Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Some tricky X86 instructions J

38 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Tricky X86 instructions®

Hexcode & assembly Capstone |Distorm3| Beaengine | Udis86 | Libopcode | IDA
678B0510000000 (64-bit) v X X X v X
mov eax, [eip+10h]
0F1A00 v X v v X v
nop dword ptr [eax]

F3F2660F58C0 v X X X X X
addpd xmm0, xmm0

F7880000000000000000 v X v v X v
test dword ptr [eax], O

D9ID8 v X X X X X
fstpnce st0, st0

DEDF v X X X X X
fstp st0, st7

0F2040 v v v v X v
mov eax, crQ

*Tested with BeaEngine 3.1, IDA 6.5 & latest versions for others

39/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Write applications with Capstone J

/53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Write your tools with Capstone

Introduce Capstone’s API.

Sample code in C.

Sample code in Python.

More tutorials in source/docs/README.

41 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Sample code in C

x@5\xb8\x13\x00\x00"

csh handle;
cs_insn “insn;
size_t count;

if (cs_open(CS_ARCH_X86, CS_MODE_64, ‘handle) CS_ERR_OK)
return 7

count cs_disasm_ex(handle, CODE, sizeof(CODE)

if (count) {
size_t j;
for (j ;o d count; j++)

printf("ex%"PRIx64" :\t%s %s\n", insn[j].address, insn[j].mnemonic,

insn[jl.op_str);

cs_free(insn, count);
} else
printf("ERROR: Failed to disassemble given code!\n");

cs_close(chandle);

0x1000: push rbp
rax, qword ptr 'rip + ©x13b8

42 /53 Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Sample code in Python

capstone

CODE

md - Cs(CS ARCH X86, CS MODE 64)
f md .disasm(C .) :
' 3 (1.address, i .mnemonic, i.op_str)

Sample Python code to disassemble binary.

$ python testl.py

0x16800: push rbp
0x1001: mov rax, gqword ptr ‘rip + ©x13b8

Sample Python code - output.

43 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Applications from around internet

@ Camal: Coseinc automated malware analysis lab.
@ Pyew: Python tool for static malware analysis.

o Radare2: Unix-like reverse engineering framework and commandline
tools.

ROPGadget: ROP gadgets finder and auto-roper.

Frida: Inject JavaScript code into native apps on Windows, Mac,
Linux and iOS.

WinAppDbg: Code instrumentation scripts in Python under a
Windows environment.

Cuckoo sandbox: Automated malware analysis.

PowerSploit: PowerShell Post-Exploitation Framework.

More at www.capstone-engine.org/showcase.html

44 /53 Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

CEbot

Rick Flores @nanotechz9l - Mar 25
%32 "x31c040%89e3ed 8000 x0a\k0d\x20\x40" #2ce

Details

cebOt

ii; F’ Capstone Engine Bot .2 Follow

@nanotechz9l
XOr eax, eax
inc eax

mov ebx, eax
int Ox80

add bh, bh

4 Reply

1:25PM - 25 Mar 2014

45 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

CEnigma

@ www.cenigma.org: disassemble hexcode online.

CEnigma

Support 8 archs Link to saved result
| %86 j 64 bit j Intel j | Static reference
Offset Hexcode Asm
\0xf3 \0xf2 \0x66 \0x01 \0x58 \0xc0 0 f3f2660158cO addpd xmm@, xmm@
6 8929048 enter -Bx6f6e, Ox48
c8 92 90 . . .
a sub esi, edi
Opcode 39000000
0x48;0x29;0xfe Rex 18 addpd xmm@, xmm@
cmp rax, rdx
"f3 12 660f 58 c0” + '0x48 0x39 Oxdl0' Modrm do »

eax, dword ptr
:[ecx +
+ 0x123]

Register wrote RFLAGS
36h 67h 8b84h 91h 23h

010000 Hover mouse over
instruction for details

ed

Click into instruction

Hexcode in flexible format for Assembly manual

Save output for future reference

Keep reference for 1 Month j

46 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Epic

@ Framework to translate binaries of any arch to LLVM bitcode

@ Enable arch-independent binary analysis using existing LLVM-based
tools.

EPIC ——>» LLVM bitcode

Capstone |

U

47 /53 Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Future works

More malware resistence: X86.
@ More architectures: Hexagon, M68K, etc ?
» Using code from outside LLVM?

Provide more semantics of instructions?

Improve performance further (already very fast).

48 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Capstone's future is guaranteed!
SIMD: Continuous Evolution

1999 2000 2004 2006 2007 2008 2009 2010\11

SSE SSE2 SSE3 SSSE3 SSE4.1 SSE4.2 AES-NI AVX

70 instr 144 instr 13 instr 32 instr 47 instr 8 instr 7 instr
Single- Double- Complex Decode Video String /XML Encryption
Precision precision Data processing and

Vectors Vectors Graphics Di ti
building POP-Count pabltadd

~100 new
instr.

~300 legacy
sse instr
Streaming 8/16/32 blocks updated

256-bit
vector
3and 4-

operand
instructions

operations q CRC i
D 64/128-bit Advanced Generation
vector vector instr
integer

@ Story continues: AVX-512 extensions proposed in 2013 to be
supported in 2015 (Intel's Knights Landing processor)

@ Intel already took care of that for Capstone!

49 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Conclusions

@ Capstone is a superior disassembly framework

» Multi-arch 4+ multi-platform + multi-bindings.
Clean/simple/lightweight/intuitive architecture-neutral API.
Provide details 4+ semantics on disassembled instruction.
Rich choices of options to customize engine at run-time.
Special support for embedding into firmware/OS kernel.
Future update guaranteed for all archs.
Open source BSD license.

vV VvV VY VY

@ We are seriously committed to this project to make it the best disasm
engine.

@ More applications building on top of Capstone - soon.

50 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

References

o Website: www.capstone-engine.org

@ Github source: github.com/aquynh/capstone/tree/next (latest)
@ Docs: github.com/aquynh/capstone/blob/next/docs/README
e CEbot: www.capstone-engine.org/bot.html

o CEnigma: www.cenigma.org

Nguyen Anh Quynh, Coseinc <aquynh©@gmail.com>

Acknowledgements

@ Capstone was forked from & will continue to get "supported" by the
almighty LLVM project.

@ Community support is incredible, thanks!

@ Special thanks to all binding authors!

@ Shouts to all code contributors & bug reporters!

@ Ange Albertini & Dang Hoang Vu for reviewing slides!

52 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

Questions and answers

Capstone: Next Generation Disassembly Framework
www.capstone-engine.org

Twitter: @capstone_engine

NGUYEN Anh Quynh <aquynh-at-gmail.com>

53 /53 Nguyen Anh Quynh, Coseinc <aquynh@gmail.com>

	Disassembly engines & their issues
	Capstone: general ideas & design
	Capstone goals
	Capstone design

	Capstone implementation
	Some tricky X86 instructions
	Applications
	Conclusions

