Comparison of Brotli, Deflate, Zopfli, LZMA, LZHAM
and Bzip2 Compression Algorithms

Jyrki Alakuijala, Evgenii Kliuchnikov, Zoltan Szabadka, and Lode Vandevenne
Google, Inc.

Abstract—This paper compares six compression techniques, and based on the results
proposes that brotli could be used as a replacement of the common deflate algorithm.
We compared the performance of brotli by measuring the compression ratio and speed,
as well as decompression speed on three different corpora: the Canterbury compression
corpus, an ad hoc crawled web content corpus, and enwik8. On all three corpora we
show performance superior to that of deflate. Further, we show that Zopfli, LZMA,
LZHAM and bzip2 use significantly more CPU time for either compression or
decompression and could not always work as direct replacements of deflate.

Introduction

Much of the practical lossless data compression is done with the deflate algorithm, not only
because it is well supported by existing systems, but also because it is relatively simple and fast
to encode and decode. In 2013 we launched Zopfli [1], a compression algorithm that allows for
denser compression while remaining compatible with the deflate format. While Zopfli is now
well-accepted in the field, there were opinions expressed that we should move on from the
deflate file format to a modern solution. Brotli [2] is our attempt at building a compression format
and an example implementation of this format that is fundamentally more efficient than deflate.
In this paper we measure the performance of our implementation and compare it with deflate
and a few other compression algorithms.

Methods

The tests were run with a 22 bit window size for brotli, LZMA and LZHAM, and a 15 bit window
size for deflate and zopfli. We used a 22 bit window size because past experience showed that
larger windows can be slower to decode. Larger window sizes tend to give a higher
compression ratio at the expense of decoding speed. For deflate and zopfli we used the
maximum size allowed by the format. The versions of the algorithms tested are:



brotli version 0.2.0 [2],

deflate algorithm from zlib 1.2.8 [3],
Zopfli version from github 2015-09-01 [4],
LZMA implementation in 7zip 9.20.1 [5],
LZHAM 1.0 stable 1 [6], and

bzip2 1.0.6, 6-Sept-2010 [7].

The test computer we used is an Intel® Xeon® CPU E5-1650 v2 running at 3.5 GHz with six
cores and six additional hyper threading contexts. We run linux 3.13.0. All codecs were
compiled using the same compiler, GCC 4.8.4 at -O2 level optimization. All tests were run
single-threaded on an otherwise idle computer.

The compression corpora we used in the testing are the Canterbury compression corpus [8], an
ad hoc crawled web content corpus, 1’285 files, 70°611°753 bytes total, and enwik8, a single file
corpus that is used in the Hutter prize [9]. The average file size on the web content corpus is
only 55 kB, so the larger window size advantage of advanced algorithms over deflate mostly
disappears there.

We measured the compression ratio, compression speed and decompression speed for
selected algorithms and compression levels. The compression and decompression speed of
each algorithm were measured with the same benchmark program that called the compression
and decompression routines of each algorithm from statically linked libraries.

We limited the selection of algorithms to those that generally have a higher compression ratio
than that of deflate. For this reason we excluded algorithms like 1z4 and zstd from this study.

Unlike other algorithms compared here, brotli includes a static dictionary. It contains 13’504
words or syllables of English, Spanish, Chinese, Hindi, Russian and Arabic, as well as common
phrases used in machine readable languages, particularly HTML and JavaScript. The total size
of the static dictionary is 122’784 bytes. The static dictionary is extended by a mechanism of
transforms that slightly change the words in the dictionary. A total of 1'633’984 sequences,
although not all of them unique, can be constructed by using the 121 transforms. To reduce the
amount of bias the static dictionary gives to the results, we used a multilingual web corpus of 93
different languages where only 122 of the 1285 documents (9.5 %) are in languages supported
by our static dictionary.

In averaging over the results of individual files and over the corpora we chose to use geometric
mean instead of the more common arithmetic mean. The geometric mean gives a bit more
weight for poor performance, i.e., if a particular algorithm compresses one file type extremely
fast or densely, it will not be propagated into the results as strongly as with an arithmetic mean.



Results

Tables 1, 2 and 3 show the results of three different corpora. Figure 1 shows the decompression
speed vs. compression ratio on Canterbury corpus, showing graphically some of the results
from Table 1. We can see from the tables that brotli at quality setting 1 (short-hand notation in
this document brotli:1) compresses and decompresses roughly the same speed as deflate:1, but
offers 12—16 % higher compression ratio. Brotli:9 is again roughly similar with deflate:9 on the
Canterbury and web content corpora, but gives a speed increase of 28 % in decoding of enwik8,
and a compression ratio increase of 13—-21 %. Brotli:11 is significantly faster in compression
than zopfli and gives 20—26 % higher compression ratio.

Brotli gives slightly faster decompression than deflate for the tested corpora, while other
advanced algorithms (LZMA, LZHAM and bzip2) are slower than deflate. The geometric means
for all reported decompression speeds in the table are 342.2 MB/s for brotli and 323.6 MB/s for
deflate, a 5.7 % advantage for brotli.

In compression brotli:1 is similarly 5.7 % faster than deflate: 1, but brotli:9 happens to be 32.3 %
slower than deflate:9. However, one should not compare compression speed simply by the
quality setting. A more useful comparison is to consider compression speed for an aimed
compression ratio. Often brotli:1 is close to deflate:9, and sometimes even exceeding its
compression ratio. For example, when compressing the Canterbury corpus down to 3.3 ratio
one could use either brotli:1 at 98.3 MB/s or deflate:9 at 15.5 MB/s.

LZMA can compress enwik8 with a 2.5 % higher compression ratio, but that comes with a
penalty of 3.5 times longer decompression time. LZHAM:4 is somewhat similar in performance
with brotli:11: 1 % higher compression ratio at a cost of 25 % slower decompression speed. On
shorter files, like Canterbury corpus and web documents, brotli's compression ratios are
unmatched by LZMA and LZHAM.

Bzip2 was able to compress some text files rather well, but in the overall results it falls behind.



Table 1. This table shows the results of compression algorithms on the Canterbury corpus. The
Canterbury corpus contains 11 files, and we show the geometric mean for the measured
attributes: compression ratio, compression speed and decompression speed.

Algorithm: Compression Compression speed Decompression
quality setting ratio [MB/s] speed [MB/s]
brotli:1 3.381 98.3 334.0
brotli:9 3.965 17.0 354.5
brotli:11 4.347 0.5 289.5
deflate:1 2.913 93.5 323.0
deflate:9 3.371 15.5 347.3
zopfli 3.580 0.2 3421
Izma:1 3.847 10.2 70.0
Ilzma:9 4.240 3.9 71.7
Izham:1 3.836 3.9 116.0
Izham:4 3.952 0.5 117.7
bzip2:1 3.757 11.8 40.4
bzip2:9 3.869 12.0 40.2
4.4 ' BroT
lzma:9
4.2 ' .
4 + lzham:4 br9t|i:9 B
bzip2:9|z':”ai1 Izham:1
o 38 r bzip2:1 ’ .
£ .
'g 36 - z?pﬂi
o
3
&} 34 | brot!i:‘l il
déflate:e
32 - .
3 r i
deflate:1
28 Il Il Il Il 1 Il Il
0 50 100 150 200 250 300 350 400

Decompression speed [MB/s]

Figure 1. The decompression speed vs. compression ratio of the Canterbury corpus as a
Scatter plot. For the decompression speed vs. compression ratio, brotli:9 and brotli:11 form the
pareto-optimal front.



Table 2. Results of the compression algorithms on a sample of documents crawled from the
Internet. The sample consists of 1285 HTML documents, with 93 different languages.

Algorithm: Compression Compression speed Decompression
quality setting ratio [MB/s] speed [MB/s]
brotli:1 5.217 145.2 508.4

brotli:9 6.253 30.1 508.7

brotli:11 6.938 0.6 441.8
deflate:1 4.666 146.9 434.8
deflate:9 5.528 32.9 484 .1

zopfli 5.770 0.2 460.1

lzma:1 5.825 7.9 100.5

Izma:9 6.231 4.4 102.2

Izham:1 5.580 4.7 168.7
Izham:4 5.768 0.2 172.7

bzip2:1 5.710 11.0 52.3

bzip2:9 5.867 11.1 52.3

Table 3. Results of different compression algorithms on the enwik8 file.

Algorithm: Compression Compression speed Decompression
quality setting ratio [MB/s] speed [MB/s]
brotli:1 2711 78.3 228.6

brotli:9 3.308 5.6 279.4
brotli:11 3.607 0.4 257.4
deflate:1 2.364 70.8 211.7
deflate:9 2.742 18.1 2174

zopfii 2.857 0.6 227.7

Izma:1 3.106 9.8 60.6

Izma:9 3.696 3.44 71.8

Izham:1 3.335 24 177.9
Izham:4 3.643 0.4 192.2

bzip2:1 3.007 12.3 30.8

bzip2:9 3.447 12.4 30.3



Discussion and Conclusions

These comparisons are done with a fixed width (22 bits) backward reference window. Other
algorithms could possibly benefit from different widths. LZMA and LZHAM are commonly
applied with a larger window. In this study we are looking for a replacement candidate algorithm
for the deflate algorithm, and a larger window could slow down encoding and decoding as well
as use more memory during decoding. Applying the same backward reference window size in
LZMA, LZHAM and brotli removes one complication from the comparison.

Brotli uses a static dictionary that can be helpful for compressing short files. Other algorithms
could be easily modified to do the same, and they would obtain slightly better compression
ratios. For a long file like enwik8 a static dictionary is not very helpful. Canterbury corpus
contains short documents with English, and there brotli’s static dictionary might be giving it an
unfair advantage.

Our results indicate that brotli, and only brotli out of all the benchmarked algorithms, would be a
good replacement for the common use cases of the deflate algorithm in all three aspects,
compression ratio, compression speed, and decompression speed.

References

https://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
https://github.com/google/brotli/releases/tag/v0.2.0

http://www.zlib.net/
https://github.com/google/zopfli/commit/89cf773beef75d7f4d6d378debdf299378c3314e
http://www.7-zip.org/history.txt
https://github.com/richgel999/Izham_codec/releases/tag/v1_0_stable1
http://www.bzip.org/

http://corpus.canterbury.ac.nz/

http://prize.hutter1.net/

©oNOOhwDND =



https://github.com/richgel999/lzham_codec/releases/tag/v1_0_stable1
http://www.bzip.org/
http://www.zlib.net/
https://github.com/google/brotli/releases/tag/v0.2.0
http://corpus.canterbury.ac.nz/
https://zopfli.googlecode.com/files/Data_compression_using_Zopfli.pdf
http://www.7-zip.org/history.txt
http://prize.hutter1.net/
https://github.com/google/zopfli/commit/89cf773beef75d7f4d6d378debdf299378c3314e

