/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.linear;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

import java.io.Serializable;

/**
 * Implementation of a diagonal matrix.
 *
 * @since 3.1.1
 */
public class DiagonalMatrix extends AbstractRealMatrix implements Serializable {
    /** Serializable version identifier. */
    private static final long serialVersionUID = 20121229L;

    /** Entries of the diagonal. */
    private final double[] data;

    /**
     * Creates a matrix with the supplied dimension.
     *
     * @param dimension Number of rows and columns in the new matrix.
     * @throws NotStrictlyPositiveException if the dimension is not positive.
     */
    public DiagonalMatrix(final int dimension) throws NotStrictlyPositiveException {
        super(dimension, dimension);
        data = new double[dimension];
    }

    /**
     * Creates a matrix using the input array as the underlying data. <br>
     * The input array is copied, not referenced.
     *
     * @param d Data for the new matrix.
     */
    public DiagonalMatrix(final double[] d) {
        this(d, true);
    }

    /**
     * Creates a matrix using the input array as the underlying data. <br>
     * If an array is created specially in order to be embedded in a this instance and not used
     * directly, the {@code copyArray} may be set to {@code false}. This will prevent the copying
     * and improve performance as no new array will be built and no data will be copied.
     *
     * @param d Data for new matrix.
     * @param copyArray if {@code true}, the input array will be copied, otherwise it will be
     *     referenced.
     * @exception NullArgumentException if d is null
     */
    public DiagonalMatrix(final double[] d, final boolean copyArray) throws NullArgumentException {
        MathUtils.checkNotNull(d);
        data = copyArray ? d.clone() : d;
    }

    /**
     * {@inheritDoc}
     *
     * @throws DimensionMismatchException if the requested dimensions are not equal.
     */
    @Override
    public RealMatrix createMatrix(final int rowDimension, final int columnDimension)
            throws NotStrictlyPositiveException, DimensionMismatchException {
        if (rowDimension != columnDimension) {
            throw new DimensionMismatchException(rowDimension, columnDimension);
        }

        return new DiagonalMatrix(rowDimension);
    }

    /** {@inheritDoc} */
    @Override
    public RealMatrix copy() {
        return new DiagonalMatrix(data);
    }

    /**
     * Compute the sum of {@code this} and {@code m}.
     *
     * @param m Matrix to be added.
     * @return {@code this + m}.
     * @throws MatrixDimensionMismatchException if {@code m} is not the same size as {@code this}.
     */
    public DiagonalMatrix add(final DiagonalMatrix m) throws MatrixDimensionMismatchException {
        // Safety check.
        MatrixUtils.checkAdditionCompatible(this, m);

        final int dim = getRowDimension();
        final double[] outData = new double[dim];
        for (int i = 0; i < dim; i++) {
            outData[i] = data[i] + m.data[i];
        }

        return new DiagonalMatrix(outData, false);
    }

    /**
     * Returns {@code this} minus {@code m}.
     *
     * @param m Matrix to be subtracted.
     * @return {@code this - m}
     * @throws MatrixDimensionMismatchException if {@code m} is not the same size as {@code this}.
     */
    public DiagonalMatrix subtract(final DiagonalMatrix m) throws MatrixDimensionMismatchException {
        MatrixUtils.checkSubtractionCompatible(this, m);

        final int dim = getRowDimension();
        final double[] outData = new double[dim];
        for (int i = 0; i < dim; i++) {
            outData[i] = data[i] - m.data[i];
        }

        return new DiagonalMatrix(outData, false);
    }

    /**
     * Returns the result of postmultiplying {@code this} by {@code m}.
     *
     * @param m matrix to postmultiply by
     * @return {@code this * m}
     * @throws DimensionMismatchException if {@code columnDimension(this) != rowDimension(m)}
     */
    public DiagonalMatrix multiply(final DiagonalMatrix m) throws DimensionMismatchException {
        MatrixUtils.checkMultiplicationCompatible(this, m);

        final int dim = getRowDimension();
        final double[] outData = new double[dim];
        for (int i = 0; i < dim; i++) {
            outData[i] = data[i] * m.data[i];
        }

        return new DiagonalMatrix(outData, false);
    }

    /**
     * Returns the result of postmultiplying {@code this} by {@code m}.
     *
     * @param m matrix to postmultiply by
     * @return {@code this * m}
     * @throws DimensionMismatchException if {@code columnDimension(this) != rowDimension(m)}
     */
    @Override
    public RealMatrix multiply(final RealMatrix m) throws DimensionMismatchException {
        if (m instanceof DiagonalMatrix) {
            return multiply((DiagonalMatrix) m);
        } else {
            MatrixUtils.checkMultiplicationCompatible(this, m);
            final int nRows = m.getRowDimension();
            final int nCols = m.getColumnDimension();
            final double[][] product = new double[nRows][nCols];
            for (int r = 0; r < nRows; r++) {
                for (int c = 0; c < nCols; c++) {
                    product[r][c] = data[r] * m.getEntry(r, c);
                }
            }
            return new Array2DRowRealMatrix(product, false);
        }
    }

    /** {@inheritDoc} */
    @Override
    public double[][] getData() {
        final int dim = getRowDimension();
        final double[][] out = new double[dim][dim];

        for (int i = 0; i < dim; i++) {
            out[i][i] = data[i];
        }

        return out;
    }

    /**
     * Gets a reference to the underlying data array.
     *
     * @return 1-dimensional array of entries.
     */
    public double[] getDataRef() {
        return data;
    }

    /** {@inheritDoc} */
    @Override
    public double getEntry(final int row, final int column) throws OutOfRangeException {
        MatrixUtils.checkMatrixIndex(this, row, column);
        return row == column ? data[row] : 0;
    }

    /**
     * {@inheritDoc}
     *
     * @throws NumberIsTooLargeException if {@code row != column} and value is non-zero.
     */
    @Override
    public void setEntry(final int row, final int column, final double value)
            throws OutOfRangeException, NumberIsTooLargeException {
        if (row == column) {
            MatrixUtils.checkRowIndex(this, row);
            data[row] = value;
        } else {
            ensureZero(value);
        }
    }

    /**
     * {@inheritDoc}
     *
     * @throws NumberIsTooLargeException if {@code row != column} and increment is non-zero.
     */
    @Override
    public void addToEntry(final int row, final int column, final double increment)
            throws OutOfRangeException, NumberIsTooLargeException {
        if (row == column) {
            MatrixUtils.checkRowIndex(this, row);
            data[row] += increment;
        } else {
            ensureZero(increment);
        }
    }

    /** {@inheritDoc} */
    @Override
    public void multiplyEntry(final int row, final int column, final double factor)
            throws OutOfRangeException {
        // we don't care about non-diagonal elements for multiplication
        if (row == column) {
            MatrixUtils.checkRowIndex(this, row);
            data[row] *= factor;
        }
    }

    /** {@inheritDoc} */
    @Override
    public int getRowDimension() {
        return data.length;
    }

    /** {@inheritDoc} */
    @Override
    public int getColumnDimension() {
        return data.length;
    }

    /** {@inheritDoc} */
    @Override
    public double[] operate(final double[] v) throws DimensionMismatchException {
        return multiply(new DiagonalMatrix(v, false)).getDataRef();
    }

    /** {@inheritDoc} */
    @Override
    public double[] preMultiply(final double[] v) throws DimensionMismatchException {
        return operate(v);
    }

    /** {@inheritDoc} */
    @Override
    public RealVector preMultiply(final RealVector v) throws DimensionMismatchException {
        final double[] vectorData;
        if (v instanceof ArrayRealVector) {
            vectorData = ((ArrayRealVector) v).getDataRef();
        } else {
            vectorData = v.toArray();
        }
        return MatrixUtils.createRealVector(preMultiply(vectorData));
    }

    /**
     * Ensure a value is zero.
     *
     * @param value value to check
     * @exception NumberIsTooLargeException if value is not zero
     */
    private void ensureZero(final double value) throws NumberIsTooLargeException {
        if (!Precision.equals(0.0, value, 1)) {
            throw new NumberIsTooLargeException(FastMath.abs(value), 0, true);
        }
    }

    /**
     * Computes the inverse of this diagonal matrix.
     *
     * <p>Note: this method will use a singularity threshold of 0, use {@link #inverse(double)} if a
     * different threshold is needed.
     *
     * @return the inverse of {@code m}
     * @throws SingularMatrixException if the matrix is singular
     * @since 3.3
     */
    public DiagonalMatrix inverse() throws SingularMatrixException {
        return inverse(0);
    }

    /**
     * Computes the inverse of this diagonal matrix.
     *
     * @param threshold Singularity threshold.
     * @return the inverse of {@code m}
     * @throws SingularMatrixException if the matrix is singular
     * @since 3.3
     */
    public DiagonalMatrix inverse(double threshold) throws SingularMatrixException {
        if (isSingular(threshold)) {
            throw new SingularMatrixException();
        }

        final double[] result = new double[data.length];
        for (int i = 0; i < data.length; i++) {
            result[i] = 1.0 / data[i];
        }
        return new DiagonalMatrix(result, false);
    }

    /**
     * Returns whether this diagonal matrix is singular, i.e. any diagonal entry is equal to {@code
     * 0} within the given threshold.
     *
     * @param threshold Singularity threshold.
     * @return {@code true} if the matrix is singular, {@code false} otherwise
     * @since 3.3
     */
    public boolean isSingular(double threshold) {
        for (int i = 0; i < data.length; i++) {
            if (Precision.equals(data[i], 0.0, threshold)) {
                return true;
            }
        }
        return false;
    }
}
