/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import org.apache.commons.math3.analysis.function.HarmonicOscillator;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.optim.nonlinear.vector.MultivariateVectorOptimizer;
import org.apache.commons.math3.util.FastMath;

/**
 * Class that implements a curve fitting specialized for sinusoids.
 *
 * <p>Harmonic fitting is a very simple case of curve fitting. The estimated coefficients are the
 * amplitude a, the pulsation &omega; and the phase &phi;: <code>f (t) = a cos (&omega; t + &phi;)
 * </code>. They are searched by a least square estimator initialized with a rough guess based on
 * integrals.
 *
 * @since 2.0
 * @deprecated As of 3.3. Please use {@link HarmonicCurveFitter} and {@link WeightedObservedPoints}
 *     instead.
 */
@Deprecated
public class HarmonicFitter extends CurveFitter<HarmonicOscillator.Parametric> {
    /**
     * Simple constructor.
     *
     * @param optimizer Optimizer to use for the fitting.
     */
    public HarmonicFitter(final MultivariateVectorOptimizer optimizer) {
        super(optimizer);
    }

    /**
     * Fit an harmonic function to the observed points.
     *
     * @param initialGuess First guess values in the following order:
     *     <ul>
     *       <li>Amplitude
     *       <li>Angular frequency
     *       <li>Phase
     *     </ul>
     *
     * @return the parameters of the harmonic function that best fits the observed points (in the
     *     same order as above).
     */
    public double[] fit(double[] initialGuess) {
        return fit(new HarmonicOscillator.Parametric(), initialGuess);
    }

    /**
     * Fit an harmonic function to the observed points. An initial guess will be automatically
     * computed.
     *
     * @return the parameters of the harmonic function that best fits the observed points (see the
     *     other {@link #fit(double[]) fit} method.
     * @throws NumberIsTooSmallException if the sample is too short for the the first guess to be
     *     computed.
     * @throws ZeroException if the first guess cannot be computed because the abscissa range is
     *     zero.
     */
    public double[] fit() {
        return fit((new ParameterGuesser(getObservations())).guess());
    }

    /**
     * This class guesses harmonic coefficients from a sample.
     *
     * <p>The algorithm used to guess the coefficients is as follows:
     *
     * <p>We know f (t) at some sampling points t<sub>i</sub> and want to find a, &omega; and &phi;
     * such that f (t) = a cos (&omega; t + &phi;).
     *
     * <p>From the analytical expression, we can compute two primitives :
     *
     * <pre>
     *     If2  (t) = &int; f<sup>2</sup>  = a<sup>2</sup> &times; [t + S (t)] / 2
     *     If'2 (t) = &int; f'<sup>2</sup> = a<sup>2</sup> &omega;<sup>2</sup> &times; [t - S (t)] / 2
     *     where S (t) = sin (2 (&omega; t + &phi;)) / (2 &omega;)
     * </pre>
     *
     * <p>We can remove S between these expressions :
     *
     * <pre>
     *     If'2 (t) = a<sup>2</sup> &omega;<sup>2</sup> t - &omega;<sup>2</sup> If2 (t)
     * </pre>
     *
     * <p>The preceding expression shows that If'2 (t) is a linear combination of both t and If2
     * (t): If'2 (t) = A &times; t + B &times; If2 (t)
     *
     * <p>From the primitive, we can deduce the same form for definite integrals between
     * t<sub>1</sub> and t<sub>i</sub> for each t<sub>i</sub> :
     *
     * <pre>
     *   If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>) = A &times; (t<sub>i</sub> - t<sub>1</sub>) + B &times; (If2 (t<sub>i</sub>) - If2 (t<sub>1</sub>))
     * </pre>
     *
     * <p>We can find the coefficients A and B that best fit the sample to this linear expression by
     * computing the definite integrals for each sample points.
     *
     * <p>For a bilinear expression z (x<sub>i</sub>, y<sub>i</sub>) = A &times; x<sub>i</sub> + B
     * &times; y<sub>i</sub>, the coefficients A and B that minimize a least square criterion &sum;
     * (z<sub>i</sub> - z (x<sub>i</sub>, y<sub>i</sub>))<sup>2</sup> are given by these
     * expressions:
     *
     * <pre>
     *
     *         &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
     *     A = ------------------------
     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
     *
     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub>
     *     B = ------------------------
     *         &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
     * </pre>
     *
     * <p>In fact, we can assume both a and &omega; are positive and compute them directly, knowing
     * that A = a<sup>2</sup> &omega;<sup>2</sup> and that B = - &omega;<sup>2</sup>. The complete
     * algorithm is therefore:
     *
     * <pre>
     *
     * for each t<sub>i</sub> from t<sub>1</sub> to t<sub>n-1</sub>, compute:
     *   f  (t<sub>i</sub>)
     *   f' (t<sub>i</sub>) = (f (t<sub>i+1</sub>) - f(t<sub>i-1</sub>)) / (t<sub>i+1</sub> - t<sub>i-1</sub>)
     *   x<sub>i</sub> = t<sub>i</sub> - t<sub>1</sub>
     *   y<sub>i</sub> = &int; f<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
     *   z<sub>i</sub> = &int; f'<sup>2</sup> from t<sub>1</sub> to t<sub>i</sub>
     *   update the sums &sum;x<sub>i</sub>x<sub>i</sub>, &sum;y<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>y<sub>i</sub>, &sum;x<sub>i</sub>z<sub>i</sub> and &sum;y<sub>i</sub>z<sub>i</sub>
     * end for
     *
     *            |--------------------------
     *         \  | &sum;y<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
     * a     =  \ | ------------------------
     *           \| &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
     *
     *
     *            |--------------------------
     *         \  | &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>z<sub>i</sub> - &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>z<sub>i</sub>
     * &omega;     =  \ | ------------------------
     *           \| &sum;x<sub>i</sub>x<sub>i</sub> &sum;y<sub>i</sub>y<sub>i</sub> - &sum;x<sub>i</sub>y<sub>i</sub> &sum;x<sub>i</sub>y<sub>i</sub>
     *
     * </pre>
     *
     * <p>Once we know &omega;, we can compute:
     *
     * <pre>
     *    fc = &omega; f (t) cos (&omega; t) - f' (t) sin (&omega; t)
     *    fs = &omega; f (t) sin (&omega; t) + f' (t) cos (&omega; t)
     * </pre>
     *
     * <p>It appears that <code>fc = a &omega; cos (&phi;)</code> and <code>
     * fs = -a &omega; sin (&phi;)</code>, so we can use these expressions to compute &phi;. The
     * best estimate over the sample is given by averaging these expressions.
     *
     * <p>Since integrals and means are involved in the preceding estimations, these operations run
     * in O(n) time, where n is the number of measurements.
     */
    public static class ParameterGuesser {
        /** Amplitude. */
        private final double a;

        /** Angular frequency. */
        private final double omega;

        /** Phase. */
        private final double phi;

        /**
         * Simple constructor.
         *
         * @param observations Sampled observations.
         * @throws NumberIsTooSmallException if the sample is too short.
         * @throws ZeroException if the abscissa range is zero.
         * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
         *     results.
         */
        public ParameterGuesser(WeightedObservedPoint[] observations) {
            if (observations.length < 4) {
                throw new NumberIsTooSmallException(
                        LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE,
                        observations.length,
                        4,
                        true);
            }

            final WeightedObservedPoint[] sorted = sortObservations(observations);

            final double aOmega[] = guessAOmega(sorted);
            a = aOmega[0];
            omega = aOmega[1];

            phi = guessPhi(sorted);
        }

        /**
         * Gets an estimation of the parameters.
         *
         * @return the guessed parameters, in the following order:
         *     <ul>
         *       <li>Amplitude
         *       <li>Angular frequency
         *       <li>Phase
         *     </ul>
         */
        public double[] guess() {
            return new double[] {a, omega, phi};
        }

        /**
         * Sort the observations with respect to the abscissa.
         *
         * @param unsorted Input observations.
         * @return the input observations, sorted.
         */
        private WeightedObservedPoint[] sortObservations(WeightedObservedPoint[] unsorted) {
            final WeightedObservedPoint[] observations = unsorted.clone();

            // Since the samples are almost always already sorted, this
            // method is implemented as an insertion sort that reorders the
            // elements in place. Insertion sort is very efficient in this case.
            WeightedObservedPoint curr = observations[0];
            for (int j = 1; j < observations.length; ++j) {
                WeightedObservedPoint prec = curr;
                curr = observations[j];
                if (curr.getX() < prec.getX()) {
                    // the current element should be inserted closer to the beginning
                    int i = j - 1;
                    WeightedObservedPoint mI = observations[i];
                    while ((i >= 0) && (curr.getX() < mI.getX())) {
                        observations[i + 1] = mI;
                        if (i-- != 0) {
                            mI = observations[i];
                        }
                    }
                    observations[i + 1] = curr;
                    curr = observations[j];
                }
            }

            return observations;
        }

        /**
         * Estimate a first guess of the amplitude and angular frequency. This method assumes that
         * the {@link #sortObservations(WeightedObservedPoint[])} method has been called previously.
         *
         * @param observations Observations, sorted w.r.t. abscissa.
         * @throws ZeroException if the abscissa range is zero.
         * @throws MathIllegalStateException when the guessing procedure cannot produce sensible
         *     results.
         * @return the guessed amplitude (at index 0) and circular frequency (at index 1).
         */
        private double[] guessAOmega(WeightedObservedPoint[] observations) {
            final double[] aOmega = new double[2];

            // initialize the sums for the linear model between the two integrals
            double sx2 = 0;
            double sy2 = 0;
            double sxy = 0;
            double sxz = 0;
            double syz = 0;

            double currentX = observations[0].getX();
            double currentY = observations[0].getY();
            double f2Integral = 0;
            double fPrime2Integral = 0;
            final double startX = currentX;
            for (int i = 1; i < observations.length; ++i) {
                // one step forward
                final double previousX = currentX;
                final double previousY = currentY;
                currentX = observations[i].getX();
                currentY = observations[i].getY();

                // update the integrals of f<sup>2</sup> and f'<sup>2</sup>
                // considering a linear model for f (and therefore constant f')
                final double dx = currentX - previousX;
                final double dy = currentY - previousY;
                final double f2StepIntegral =
                        dx
                                * (previousY * previousY
                                        + previousY * currentY
                                        + currentY * currentY)
                                / 3;
                final double fPrime2StepIntegral = dy * dy / dx;

                final double x = currentX - startX;
                f2Integral += f2StepIntegral;
                fPrime2Integral += fPrime2StepIntegral;

                sx2 += x * x;
                sy2 += f2Integral * f2Integral;
                sxy += x * f2Integral;
                sxz += x * fPrime2Integral;
                syz += f2Integral * fPrime2Integral;
            }

            // compute the amplitude and pulsation coefficients
            double c1 = sy2 * sxz - sxy * syz;
            double c2 = sxy * sxz - sx2 * syz;
            double c3 = sx2 * sy2 - sxy * sxy;
            if ((c1 / c2 < 0) || (c2 / c3 < 0)) {
                final int last = observations.length - 1;
                // Range of the observations, assuming that the
                // observations are sorted.
                final double xRange = observations[last].getX() - observations[0].getX();
                if (xRange == 0) {
                    throw new ZeroException();
                }
                aOmega[1] = 2 * Math.PI / xRange;

                double yMin = Double.POSITIVE_INFINITY;
                double yMax = Double.NEGATIVE_INFINITY;
                for (int i = 1; i < observations.length; ++i) {
                    final double y = observations[i].getY();
                    if (y < yMin) {
                        yMin = y;
                    }
                    if (y > yMax) {
                        yMax = y;
                    }
                }
                aOmega[0] = 0.5 * (yMax - yMin);
            } else {
                if (c2 == 0) {
                    // In some ill-conditioned cases (cf. MATH-844), the guesser
                    // procedure cannot produce sensible results.
                    throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR);
                }

                aOmega[0] = FastMath.sqrt(c1 / c2);
                aOmega[1] = FastMath.sqrt(c2 / c3);
            }

            return aOmega;
        }

        /**
         * Estimate a first guess of the phase.
         *
         * @param observations Observations, sorted w.r.t. abscissa.
         * @return the guessed phase.
         */
        private double guessPhi(WeightedObservedPoint[] observations) {
            // initialize the means
            double fcMean = 0;
            double fsMean = 0;

            double currentX = observations[0].getX();
            double currentY = observations[0].getY();
            for (int i = 1; i < observations.length; ++i) {
                // one step forward
                final double previousX = currentX;
                final double previousY = currentY;
                currentX = observations[i].getX();
                currentY = observations[i].getY();
                final double currentYPrime = (currentY - previousY) / (currentX - previousX);

                double omegaX = omega * currentX;
                double cosine = FastMath.cos(omegaX);
                double sine = FastMath.sin(omegaX);
                fcMean += omega * currentY * cosine - currentYPrime * sine;
                fsMean += omega * currentY * sine + currentYPrime * cosine;
            }

            return FastMath.atan2(-fsMean, fcMean);
        }
    }
}
