
DNG noise model

Document version: 1.4
Document date: 15th April, 2021

1. Document scope
2. Running the test

2.1. Physical setup
2.2. Invoking the script
2.3. Script output

2.3.1. Plots
2.3.2. Code snippet

3. External validation of the DNG noise model

1. Document scope

This document describes the process for generating the DNG noise model for a given camera
model, using the dng_noise_model.py script (which builds on the ITS infrastructure). The
output of this test is a C code snippet than can be cut-and-pasted into the camera HAL for a
device; note that this is a per-model set of parameters, not a per-unit set.

2. Running the test

2.1. Physical setup

This script works by capturing a series of images at varying gains and exposure times. The
images should contain as little real image content as possible. To ensure best results, use
several methods of filtering out real image content:

● Use a diffuser in front of the lens (a simple technique is to just put scotch tape over the
lens).

● Avoid flickering light sources.

Additionally, there are some constraints on the illumination level of the scene. The script needs
to capture a large series of images over a wide range of exposures. The scene illumination level
should remain constant throughout this process.



Below is an example of an image captured from a device ready to run the script. The soft
changes in illumination are acceptable:

2.2. Invoking the script

Once the ITS environment is set up, the following command runs the script:

python tools/dng_noise_model.py

This captures several raw images from the device, copies them back to the host machine, and
performs some analysis.

2.2.1 config.yml file

A sample config.yml file is shown below for running tools/dng_noise_model.py. Note the camera
must match the <device-id> and <camera-id> for the DUT must match your setup.



TestBeds:
- Name: TEST_BED_MANUAL
Controllers:

AndroidDevice:
- serial: <device-id>
label: dut

TestParams:
debug_mode: "False"
camera: <camera-id>
scene: 0

Sample config.yml file for dng_noise_model.py

2.3. Script output

2.3.1. Plots

The script outputs several plots which should be inspected to ensure that it ran without
problems.

The first set of images is dng_noise_model_samples_iso<N>.png, where N is the ISO.
There should be a series of images for N ranging from the minimum to the maximum sensitivity.
Each image shows a plot of a samples for the sensitivity, and two fit lines. Here is an example:



Sample output plots for dng_noise_model.py

The samples are colored according to which exposure the sample was taken from. The linear fit
is a linear regression of the samples in this plot, and the model fit line is the global noise model
applied to this particular ISO. If the noise model describes the noise well, these two lines should
be similar.

dng_noise_model.png shows the two components of the noise model for a given ISO (S
and O), both as measured from the images, and predicted by the noise model. These two series
should match closely, as in the following image:



Sample dng_noise_model.png plot.

2.3.2. Code snippet

The test also generates a noise_model.c in the /tmp directory, which will look like the following:

/* Generated test code to dump a table of data for external validation
* of the noise model parameters.
*/
#include <stdio.h>
#include <assert.h>
double compute_noise_model_entry_S(int plane, int sens);
double compute_noise_model_entry_O(int plane, int sens);
int main(void) {

for (int plane = 0; plane < 4; plane++) {
for (int sens = 43; sens <= 11130; sens += 100) {

double o = compute_noise_model_entry_O(plane, sens);
double s = compute_noise_model_entry_S(plane, sens);
printf("%d,%d,%lf,%lf\n", plane, sens, o, s);

}
}



return 0;
}

/* Generated functions to map a given sensitivity to the O and S noise
* model parameters in the DNG noise model. The planes are in
* R, Gr, Gb, B order.
*/
double compute_noise_model_entry_S(int plane, int sens) {

static double noise_model_A[] = {
4.7207840135242695e-06,4.652269569355134e-06,4.647851486795737e-06,4.4715
45960443515e-06 };

static double noise_model_B[] = {
4.662319177583059e-06,1.5499709752066674e-05,1.5865229541295095e-05,7.282
0355793415545e-06 };

double A = noise_model_A[plane];
double B = noise_model_B[plane];
double s = A * sens + B;
return s < 0.0 ? 0.0 : s;

}

double compute_noise_model_entry_O(int plane, int sens) {
static double noise_model_C[] = {

5.267566497268042e-11,5.326240103730519e-11,5.5622783696977125e-11,5.0456
4830704001e-11 };

static double noise_model_D[] = {
4.1619950541273167e-07,3.3616733886889863e-07,3.4180902544231634e-07,4.03
237344152375e-07 };

double digital_gain = (sens / 695.0) < 1.0 ? 1.0 : (sens / 695.0);
double C = noise_model_C[plane];
double D = noise_model_D[plane];
double o = C * sens * sens + D * digital_gain * digital_gain;
return o < 0.0 ? 0.0 : o;

}

The entire code snippet can be pasted into a C file, compiled, and executed, and it will dump
data that can be used to visualize the generated model by plotting it (for example using a
Google Docs spreadsheet).

The output can be used in the camera HAL to generate the O,S model parameters for any given
sensitivity. The generated code can of course be modified as appropriate to fit within the camera
HAL’s code style and other requirements.

3. External validation of the DNG noise model

Once a device is up and running with the camera HAL producing the O,S model parameters
with each raw shot, one of the automated ITS tests can be used to validate that it’s working as



expected. This is a “scene 1_1” ITS test, meaning that it assumes a simple grey card inside a
light box as the test scene. The test can be run manually as follows:

python tests/scene1_1/test_dng_noise_model.py

The output of this test (aside from an automated pass/fail check) is a plot,
test_dng_noise_model_plot.png, which depicts the measured variance of a center patch
of the grey card in raw shots captured over a range of sensitivities, and compares these values

with the variance that is expected at each sensitivity by the DNG noise model in the camera
HAL (based on the O,S parameters returned in the capture result objects). A successful run will

look as follows:

Sample scene1_1/test_dng_noise_model.png plot.


